
 Motion of Charged Particle in a Magnetic Field. 

If a particle carrying a positive charge q and moving with velocity v enters a magnetic field B then it 

experiences a force F which is given by the expression 

 )( BvqF


×=  ⇒ θsinqvBF =  

Here =v


 velocity of the particle, =B


 magnetic field 

(1) Zero force  

Force on charged particle will be zero (i.e. F = 0) if 

(i) No field i.e. B = 0 ⇒ F = 0 

(ii) Neutral particle i.e. q = 0 ⇒ F = 0  

(iii) Rest charge i.e. v = 0 ⇒ F = 0 

(iv) Moving charge i.e. θ = 0o or θ = 180o ⇒ F = 0 

(2) Direction of force  

 The force F


 is always perpendicular to both the velocity v


 and the field B


 in accordance with Right Hand 

Screw Rule, through v


 and B


 themselves may or may not be perpendicular to each other. 

 

 

 

 

 

Direction of force on charged particle in magnetic field can also be find by Flemings Left Hand Rule (FLHR). 

Here, First finger (indicates) → Direction of magnetic field 

Middle finger → Direction of motion of positive charge or direction,  

opposite to the motion of negative charge. 

Thumb → Direction of force  

(3) Circular motion of charge in magnetic field  

Consider a charged particle of charge q and mass m enters in a uniform magnetic field B with an initial 

velocity v perpendicular to the field.  

 

 

 

 

 

θ = 90o, hence from F = qvB sinθ particle will experience a maximum magnetic force Fmax = qvB which act's 

in a direction perpendicular to the motion of charged particle. (By Flemings left hand rule). 

F

B

v

v  q 
θ = 0o 

θ = 180o 

q 

B  

× × ×  × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

v v 

v v 

F 

+ 

+ + 

+ 

× × × × × × 

× × × × × × 

× × × × × × 

× × × × × × 

q, m 
v B 

→ 

v 

→ 

B 

→ 

Fm 

  → 

θ 

 90° 
v 

→ B 

→ 

Fm 

  → 
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(i) Radius of the path : In this case path of charged particle is circular and magnetic force provides the 

necessary centripetal force i.e. 
r

mv
qvB

2

=  ⇒ radius of path 
qB

mv
r =   

If p = momentum of charged particle and K = kinetic energy of charged particle (gained by charged particle 

after accelerating through potential difference V) then mqVmKmvp 22 ===  

So   
q

mV

BqB

2mK

qB

p

qB

mv
r

21
====  

Kpvr ∝∝∝   i.e. with increase in speed or kinetic energy, the radius of the orbit increases. 

Note : ≅ Less radius (r) means more curvature (c) i.e. 
r

c
1

∝  

 

 

(ii) Direction of path : If a charge particle enters perpendicularly in a magnetic field, then direction of path 
described by it will be 
 

Type of charge Direction of magnetic field Direction of it’s circular motion 

Negative Outwards   

     Anticlockwise  

 

 

Negative Inward ⊗  

     Clockwise  

 

 

Positive Inward ⊗  

     Anticlockwise  

 

 

Positive Outward   

     Clockwise  

 

 

 

 

(iii) Time period : As in uniform circular motion v = rω, so the angular frequency of circular motion, called 

cyclotron or gyro-frequency, will be given by 
m

qB

r

v
==ω  and hence the time period, 

qB

m
T π

ω
π

2
2

==  

i.e., time period (or frequency) is independent of speed of particle and radius of the orbit and depends only on 

the field B and the nature, i.e., specific charge 







m

q
, of the particle. 

 

Less : r 
More : c 

More : r 
Less : c 

r = ∞ 
c = 0 

 B


 

– q 

B


⊗  

– q 

B


⊗  

+ q 

 B


 

+ q 
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(4) Motion of charge on helical path  

When the charged particle is moving at an angle to the field (other than 0o, 90o, or 180o). 

In this situation resolving the velocity of the particle along and perpendicular to the field, we find that the 

particle moves with constant velocity v cosθ  along the field (as no force acts on a charged particle when it moves 

parallel to the field) and at the same time it is also moving with velocity v sinθ perpendicular to the field due to 

which it will describe a circle (in a plane perpendicular to the field) of radius. 
qB

vsinm
r

)( θ
=  

 

 

 

 

 

Time period and frequency do not depend on velocity and so they are given by 
qB

m
T

π2
=  and 

m

qB

π
ν

2
=  

So the resultant path will be a helix with its axis parallel to the field B


 as shown in figure in this situation. 

The pitch of the helix, (i.e., linear distance travelled in one rotation) will be given by 

)cos(2)cos( θπθ v
qB

m
vTp ==  

Note : ≅  1 rotation ≡ 2π ≡ T and 1 pitch ≡ 1 T  

≅ Number of pitches ≡ Number of rotations ≡ Number of repetition = Number of helical turns 

≅ If pitch value is p, then number of pitches obtained in length l given as 

 Number of pitches
p

l
=  and time reqd. 

θcosv

l
t =  

Some standard results 

 Ratio of radii of path described by proton and α-particle in a magnetic field (particle enters perpendicular to 

the field) 
 

Constant quantity Formula Ratio of radii Ratio of curvature (c) 

v - same 

qB

mv
r = ⇒ 

q

m
r ∝   

2:1: =αrrp  1:2: =Rp cc  

 p - same  

q
r

qB

p
r

1
∝⇒=  

1:2: =αrrp  2:1: =Rp cc  

k - same  

q

m
r

qB

mk
r ∝⇒=

2
 

1:1: =αrrp  1:1: =Rp cc  

V - same  

q

m
r ∝  

2:1: =αrrp  1:2: =Rp cc  

 
 

θ 
q, m 

v 
→ B 

→ 

θ 

v 

p 

r 

B 
→ Y 

X 

Z 

v sinθ 

v cosθ 
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 Particle motion between two parallel plates )( Bv ⊥  

(i) To strike the opposite plate it is essential that rd < . 

(ii) Does not strike the opposite plate d > r. 

(iii) To touch the opposite plate rd = . 

(iv) To just not strike the opposite plate rd ≥ . 

(v) To just strike the opposite plate rd ≤ . 

(5) Lorentz force  

When the moving charged particle is subjected simultaneously to both electric field E


 and magnetic field B


, 

the moving charged particle will experience electric force EqFe


=  and magnetic force )( BvqFm


×= ; so the net 

force on it will be )]([ BvEqF ×+= . Which is the famous ‘Lorentz-force equation’. 

Depending on the directions of Ev,


 and B


 following situations are possible 

(i) When Ev


,  and B


 all the three are collinear : In this situation as the particle is moving parallel or 

antiparallel to the field, the magnetic force on it will be zero and only electric force will act and so 
m

Eq

m

F
a




==  

The particle will pass through the field following a straight line path (parallel field) with change in its speed. So 

in this situation speed, velocity, momentum kinetic energy all will change without change in direction of motion as 

shown  

 

(ii) When E  is parallel to B  and both these fields are perpendicular to v  then : eF  is 

perpendicular to mF  and they cannot cancel each other. The path of charged particle is curved in both these fields.  

 

  

 

(iii) E,v  and B are mutually perpendicular : In this situation if E


 and B


 are such that 

   0=+= me FFF


 i.e., 0)/( == mFa


  

as shown in figure, the particle will pass through the field with same velocity. 

And in this situation, as  me FF =  i.e., qvBqE =  BEv /=  

This principle is used in ‘velocity-selector’ to get a charged beam having a specific velocity. 

Note : ≅ From the above discussion, conclusion is as follows 

≅ If E = 0, B = 0, so F = 0. 

≅ If E = 0, B ≠ 0, so F may be zero (if o0=θ  or o180 ). 

≅ If E ≠ 0, B ≠ 0, so F = 0 (if |||| me FF


=  and their directions are opposite) 

≅ If E ≠ 0, B = 0, so F ≠ 0 (because constant≠v


). 

 

 

× × 

× × × × 

× × × × × × × 

× 

× × × × × × × 

× 

× × × × × × × 

d < r d = r 

d > r 

q, m 

E


 

B


 

v 
q 

q 

E


 B


 

v 

v 

z 

x 

Fe 

+ q 

Fm 

+ q 

y 
E


 

B

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 Cyclotron. 

Cyclotron is a device used to accelerated positively charged particles (like, α-particles, deutrons etc.) to acquire 

enough energy to carry out nuclear disintegration etc. t is based on the fact 

that the electric field accelerates a charged particle and the magnetic field 

keeps it revolving in circular orbits of constant frequency. Thus a small 

potential difference would impart if enormously large velocities if the 

particle is made to traverse the potential difference a number of times.  

It consists of two hollow D-shaped metallic chambers D1 and D2 

called dees. The two dees are placed horizontally with a small gap 

separating them. The dees are connected to the source of high frequency 

electric field. The dees are enclosed in a metal box containing a gas at a 

low pressure of the order of 10–3 mm mercury. The whole apparatus is placed between the two poles of a strong 

electromagnet NS as shown in fig. The magnetic field acts perpendicular to the plane of the dees.  

Note : ≅  The positive ions are produced in the gap between the two dees by the ionisation of the gas. 

To produce proton, hydrogen gas is used; while for producing alpha-particles, helium gas is used.  

(1) Cyclotron frequency : Time taken by ion to describe q semicircular path is given by 
qB

m

v

r
t

ππ
==  

If T = time period of oscillating electric field then 
qB

m
tT

π2
2 ==  the cyclotron frequency 

m

Bq

T π
ν

2

1
==  

 (2) Maximum energy of position : Maximum energy gained by the charged particle 2
22

max
2

r
m

Bq
E 








=  

where r0 = maximum radius of the circular path followed by the positive ion.  

Note : ≅ Cyclotron frequency is also known as magnetic resonance frequency. 

≅ Cyclotron can not accelerate electrons because they have very small mass.  

Hall effect : The Phenomenon of producing a transverse emf in a current carrying conductor on applying a 

magnetic field perpendicular to the direction of the current is called Hall effect.  

Hall effect helps us to know the nature and number of charge carriers in a conductor.  

Negatively charged particles Positively charged particles 

Consider a conductor having electrons as current carriers. 

The electrons move with drift velocity v  opposite to the 

direction of flow of current  
 
 

 
 

 
 
 
 
 
 

Let the current carriers be positively charged holes. The 

hole move in the direction of current  

 

 

 

 

 

 

 

 

Force acting on the hole due to magnetic field 

Target 

High frequency 
oscillator 

Energetic 
proton beam W 

N 

D1 

S 

D2 

+ + + + + + 

– 

– – – – – – – 

v 
→ 

F 
→ 

B 
→ 

VH 

x 

y 

z – – – – – – 

+ 

+ + + + + + + 

v 
→ 

F 
→ 

B 
→ 

VH 
x 

y 

z 
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force acting on electron ).( BveFm ×−=  This force acts 

along x-axis and hence electrons will move towards face 
(2) and it becomes negatively charged.  

)( BveFm ×+=  force acts along x-axis and hence holes 

move towards face (2) and it becomes positively charged.  

 

Concepts 
 

 The energy of a charged particle moving in a uniform magnetic field does not change because it experiences a force in a 

direction, perpendicular to it's direction of motion. Due to which the speed of charged particle remains unchanged and hence 

it's K.E. remains same. 

 Magnetic force does no work when the charged particle is displaced while electric force does work in displacing the charged 

particle. 

 Magnetic force is velocity dependent, while electric force is independent of the state of rest or motion of the charged particle. 

 If a particle enters a magnetic field normally to the magnetic field, then it starts moving in a circular orbit. The point at which it 

enters the magnetic field lies on the circumference. (Most of us confuse it with the centre of the orbit) 

 Deviation of charged particle in magnetic field : If a charged particle (q, m) enters a uniform magnetic field B (extends 

upto a length x) at right angles with speed v as shown in figure.  

The speed of the particle in magnetic field does not change. But it gets deviated in the magnetic field.  

Deviation in terms of time t;  t
m

Bq
t 








== ωθ  

Deviation in terms of length of the magnetic field ;  





−=

r

x1
sinθ .  This relation can be used only when x ≤ r . 

For x > r, the deviation will be 180o  as shown in the following figure  

 

 

 

 

 

 

 

Example: 28 Electrons move at right angles to a magnetic field of 2105.1 −× Tesla with a speed of ./106 27 sm×  If the 

specific charge of the electron is 11107.1 ×  Coul/kg. The radius of the circular path will be [BHU 2003] 

 (a) 2.9 cm  (b) 3.9 cm (c) 2.35 cm (d) 3 cm 

Solution : (c) 
qB

mv
r =  ⇒  

211

27

105.11017

106

.)/( −×××

×
=

Bmq

v
 m21035.2 −×=  .35.2 cm=  

Example: 29 An electron (mass .109 31 kg−×=  charge .106.1 19 coul−×= ) whose kinetic energy is joule18102.7 −×  is 

moving in a circular orbit in a magnetic field of ./109 25 mweber−×  The radius of the orbit is [MP PMT 2002] 

 (a) 1.25 cm (b) 2.5 cm (c) 12.5 cm (d) 25.0 cm 

Solution : (d) 
519

831

10106.1

102.71022
−−

−−

×××

××××
==

q

q

qB

mK
r  cm25.0= cm25= . 

Example

B 
→ 

q, m 

v 

v 

θ θ 

x 

× × × × 

× × × × 

× × × × 

× × × × 

× × × × 

× × × × 

v 

v 

r 

× × × 

× × × × 

× × × × 

× × × 

x 
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Example: 30 An electron and a proton enter a magnetic field perpendicularly. Both have same kinetic energy. Which of the 

following is true        [MP PET 1999] 

 (a) Trajectory of electron is less curved (b) Trajectory of proton is less curved 

 (c) Both trajectories are equally curved (d) Both move on straight line path 

Solution : (b) By using 
qB

mk
r

2
=  ;  For both particles →q same, →B same, →k same 

 Hence mr ∝  ⇒  
p

e

p

e

m

m

r

r
=          epep rrmm >> so  

 Since radius of the path of proton is more, hence it's trajectory is less curved. 

Example: 31 A proton and an −α particles enters in a uniform magnetic field with same velocity, then ratio of the radii of 

path describe by them  

(a) 1:1  (b) 2:1  (c) 1:2  (d) None of these 

Solution : (b) By using 
qB

mv
r =  ; →v same, →B same    ⇒   

2

m
r ∝   ⇒   

p

pp

q

q

m

m

r

r α

αα
×=  

2

12

4
=×=

p

p

p

p

q

q

m

m
 

Example: 32 A proton of mass m and charge e+  is moving in a circular orbit of a magnetic field with energy 1MeV. What 

should be the energy of α-particle (mass = 4 m and charge = +2e), so that it can revolve in the path of same 

radius       [BHU 1997]  

(a) 1 MeV (b) 4 MeV (c) 2 MeV (d) 0.5 MeV 

Solution : (a) By using 
qB

mK
r

2
= ; →r same, →B same       ⇒  

m

q
K

2

∝  

 Hence   
α

αα

m

m

q

q

K

K p

pp

×









=

2

 1
4

2
2

p

p

p

p

m

m

q

q
×










= ⇒  .1meVKK p ==α  

Example: 33 A proton and an −α particle enter a uniform magnetic field perpendicularly with the same speed. If proton 

takes sec25µ  to make 5 revolutions, then the periodic time for the −α particle would be   [MP PET 1993] 

(a) sec50µ  (b) sec25µ  (c) sec10µ  (d) sec5µ  

Solution : (c) Time period of proton sec5
5

25 µ==pT  

 By using 
qB

m
T

π2
=  ⇒  

α

αα

q

q

m

m

T

T p

pp

×=
p

p

p

p

q

q

m

m

2

4
×=  ⇒  .sec102 µα == pTT  

Example: 34 A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. 

A uniform static magnetic field B = 0.5 Tesla is acting along the x-direction. The force on the particle is  

[MP PMT 1997] 

(a) 5 × 10–11 N along î  (b) 5 × 103 N along k̂  (c) 5 × 10–11 N along ĵ−  (d) 5 × 10–4 N along k̂−  

Solution : (d) By using  )( BvqF ×= ; where jv ˆ10=  and iB ˆ5.0=   

 ⇒ )̂ˆ(105)̂5.0ˆ10(10 4811 ijijF ××=×= −−  )̂(105 4 k−×= −  i.e., 4105 −× N  along .̂k−  
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Example: 35 An electron is moving along positive x-axis. To get it moving on an anticlockwise circular path in x-y plane, a 

magnetic filed is applied      [MP PMT 1999] 

(a) Along positive y-axis   (b) Along positive z-axis   

(c) Along negative y-axis   (d) Along negative z-axis 

Solution : (a) The given situation can be drawn as follows  

 According to figure, for deflecting electron in x-y plane, force must be acting an it towards y-axis. 

 Hence according to Flemings left hand rule, magnetic field directed along positive −y axis. 

 

 

 

 

Example: 36 A particle of charge 181016 −×−  coulomb moving with velocity 10 m/s along the x-axis enters a region where 

a magnetic field of induction B is along the y-axis, and an electric field of magnitude 104 V/m is along the 

negative z-axis. If the charged particle continuous moving along the x-axis, the magnitude of B is [AIEEE 2003] 

  (a) 23 /10 mWb−  (b) 23 /10 mWb  (c) 25 /10 mWb  (d) 216 /10 mWb  

Solution : (b) Particles is moving undeflected in the presence of both electric field as well as magnetic field so it's speed  

 
B

E
v =  

v

E
B =⇒  ./10

10

10 23
4

mWb==   

Example: 37 A particle of mass m and charge q moves with a constant velocity v along the positive x direction. It enters a 

region containing a uniform magnetic field B directed along the negative z direction extending from x = a 

to x = b. The minimum value of v required so that the particle can just enter the region x > b is 

[IIT-JEE (Screening) 2002] 

 (a) qbB/m (b) q(b – a)B/m (c) qaB/m (d) q(b+a)B/2m 

Solution : (b) As shown in the following figure, the −z axis points out of the paper and the magnetic fields is directed into 

the paper, existing in the region between PQ and RS. The particle moves in a circular path of radius r in the 

magnetic field. It can just enter the region bx >  for )( qbr −≥   

 Now )( ab
qb

mv
r −≥=  

 ⇒
m

Babq
v

)( −
≥  

m

Babq
v

)(
min

−
=⇒ . 

Example: 38 At a certain place magnetic field vertically downwards. An electron approaches horizontally towards you and 

enters in this magnetic fields. It's trajectory, when seen from above will be a circle which is  

  (a) Vertical clockwise   (b) Vertical anticlockwise  

(c) Horizontal clockwise   (d) Horizontal anticlockwise 

Solution : (c) By using Flemings left hand rule.  

Example: 39 When a charged particle circulates in a normal magnetic field, then the area of it's circulation is proportional to   

  (a) It's kinetic energy   (b) It's momentum  

Q 
Y 

S 

O v x = a x = b 

R 

X 

⊗ B 

P 

y 

x 
z 

e– 

e– 

x-y plane 
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  (c) It's charge   (d) Magnetic fields intensity  

Solution : (a) 
qB

mK
r

2
=  and 2AqA =  ⇒ 

22

)2(

bq

mK
A

π
=  .KA ∝⇒  

Example: 40 An electron moves straight inside a charged parallel plate capacitor at uniform charge density .σ  The space 

between the plates is filled with constant magnetic field of induction .B  Time of straight line motion of the 
electron in the capacitor is    

(a) 
lB

e

0ε
σ

 

(b) 
σ

ε lB0  

(c) 
B

e

0ε
σ

 

(d) 
σ

ε
e

B0  

Solution : (b) The net  force acting on the electron is zero because it moves with constant velocity, due to it's motion on 

straight line. 

 0=+=⇒ menet FFF  ⇒  |||| me FF =  ⇒  evBEe =  ⇒  
BB

E
ve

0ε
σ

==         







=

o

E
ε
σ

 

 ∴   The time of motion inside the capacitor 
σ

ε lB

v

l
t 0== . 

Example: 41 A proton of mass 271067.1 −× kg  and charge 19106.1 −×  C is projected with a speed of sm /102 6×  at an 

angle of 600 to the X-axis. If a uniform magnetic field of 0.104 Tesla is applied along Y-axis, the path of proton 

is        [IIT-JEE 1995] 

(a) A circle of radius = 0.2 m  and time period 710−×π s  

 (b) A circle of radius = 0.1 m  and time period 7102 −×π s 

 (c) A helix of radius = 0.1 m  and time period 7102 −×π s  

 (d) A helix of radius = 0.2 m  and time period 7104 −×π s 

Solution : (b) By using 
qB

mv
r

θsin
= ⇒  mr 1.0

104.0106.1

30sin1021567.1
19

627

=
××

°××××
=

−
 

  and  it's time period 
qB

m
T

π2
=

104.0106.1

101.92
19

31

××

×××
=

−

−π
 .sec102 7−×= π  

Example: 42 A charge particle, having charge q accelerated through a potential difference V enter a perpendicular magnetic 

field in which it experiences a force F. If V is increased to 5V, the particle will experience a force  

  (a) F (b) 5F (c) 
5

F
 (d) F5  

Solution : (d) qVmv =2

2

1
 ⇒  

m

qV
v

2
= .  Also qvBF =   

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

l 

e– 

X 

Y 

→
v  

→
B  

30o 

60o 
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  ⇒  
m

qV
qBF

2
=  hence VF ∝  which gives .5' FF =  

Example: 43 The magnetic field is downward perpendicular to the plane of the paper and a few charged particles are 

projected in it. Which of the following is true     [CPMT 1997] 

 

 (a) A represents proton and B and electron  

 (b) Both A and B represent protons but velocity of A is more than that of B   

  (c)  Both A and B represents protons but velocity of B is more than that of A 

  (d) Both A and B represent electrons, but velocity of B is more than that of A  

Solution : (c) Both particles are deflecting in same direction so they must be of same sign.(i.e., both A and B represents protons) 

 By using 
qB

mv
r =  ⇒  vr ∝  

 From given figure radius of the path described by particle B is more than that of A. Hence .AB vv >   

Example: 44 Two very long straight, particle wires carry steady currents i and – i respectively. The distance between the 

wires is d. At a certain instant of time, a point charge q is at a point equidistant from the two wires, in the 

plane of the wires. It's instantaneous velocity v  is perpendicular to this plane. The magnitude of the force due 

to the magnetic field acting on the charge at this instant is     [IIT-JEE 1998]   

  (a) 
d

iqv

π
µ
2
0  (b) 

d

iqv

π
µ0  (c) 

d

iqv

π
µ02

 (d) Zero 

Solution : (d) According to gives information following figure can be drawn, which shows that direction of magnetic field is 

along the direction of motion of charge so net on it is zero.  

 

 

 

 

Example: 45 A metallic block carrying current i is subjected to a uniform magnetic induction B as shown in the figure. The 
moving charges experience a force F given by ……. which results in the lowering of the potential of the face 
……. Assume the speed of the carriers to be v      [IIT-JEE 1996]   

 (a) ABCDkeVB ,̂  

(b) ABCDkeVB ,̂  

(c) ABCDkeVB ,̂−  

(d) EFGHkeVB ,̂−  

Solution : (c) As the block is of metal, the charge carriers are electrons; so for current along positive x-axis, the electrons are 

moving along negative x-axis, i.e. viv −=  

and as the magnetic field is along the y-axis, i.e. jBB ˆ=   

so  )( BvqF ×=  for this case yield ]̂ˆ)[( jBiveF ×−−=  

i.e., kevBF ˆ=         [As kji ˆˆˆ =× ] 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

A 

B 

× × × × × × × 

v 

d 

d/2 d/2 

q 

E G 

A 

D 

v 

B 

F 

e– 

C 

F i 
d 

B 

H 

y 

x 
z 

B 
→ Y 

G 

X 

I 

B A 

E 

H F 

D 
C 
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As force on electrons is towards the face ABCD, the electrons will accumulate on it an hence it will acquire 
lower potential. 

 

 
  

An ionised gas contains both positive and negative ions. If it is subjected simultaneously to an electric 

field along the +ve x-axis and a magnetic field along the +z direction then  [IIT-JEE (Screening) 2000] 

(a)  Positive ions deflect towards +y direction and negative ions towards – y direction 

(b) All ions deflect towards + y direction 

(c) All ions deflect towards – y direction 

(d) Positive ions deflect towards – y direction and negative ions towards + y direction.  

Solution : (c) As the electric field is switched on, positive ion will start to move along positive x-direction and 

negative ion along negative x-direction. Current associated with motion of both types of ions is along 

positive x-direction. According to Flemings left hand rule force on both types of ions will be along 

negative y-direction. 

 

 Force on a Current Carrying Conductor in Magnetic Field. 

In case of current carrying conductor in a magnetic field force experienced by its small length element is 

BlidFd ×= ;  lid = current element )( BldlFd ×=  

Total magnetic force ∫∫ ×== )( BldiFdF  

If magnetic field is uniform i.e., B


 = constant 

)( BLiBldiF


×′=×



= ∫  

==∫ Lld


 vector sum of all the length elements from initial to final point. Which is in accordance with the 

law of vector addition is equal to length vector L

′  joining initial to final point. 

(1) Direction of force : The direction of force is always perpendicular to the plane containing lid


 and B


 

and is same as that of cross-product of two vectors )( BA


×  with ldiA =


. 

 

 

 

 

 

The direction of force when current element ldi  and B


 are perpendicular to each other can also be 

determined by applying either of the following rules 

B 
→ 

dF 
→ 

i dl 
→ P 

θ 

× × × × ×  × 

× × × × × × × 

× ×  × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

dl 
i 

dF 

B  

B 
→ 

dF 
→ 

i dl 
→ 

P 
θ 

 Tricky example: 4 
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Fleming’s left-hand rule Right-hand palm rule 

Stretch the fore-finger, central finger and thumb left hand 
mutually perpendicular. Then if the fore-finger points in the 

direction of field B


 and the central in the direction of 
current i, the thumb will point in the direction of force  

 

 

 

 

 

Stretch the fingers and thumb of right hand at right angles to 
each other. Then if the fingers point in the direction of field 

B


 and thumb in the direction of current i, then normal to 
the palm will point in the direction of force  

 

(2) Force on a straight wire : If a current carrying straight conductor (length l) is placed in an uniform 

magnetic field (B) such that it makes an angle θ with the direction of field then force experienced by it is 

θsinBilF =  

If o0=θ , 0=F  

If o90=θ , BilF =max  

(3) Force on a curved wire  

The force acting on a curved wire joining points a and b as shown in the figure is the same as that on a straight 

wire joining these points. It is given by the expression BLiF ×=  

 

 

 

 

 

 

Specific Example  

The force experienced by a semicircular wire of radius R when it is carrying a current i and is placed in a 
uniform magnetic field of induction B as shown.  

 

  

 

 

 

 

 

 

Force 

Magnetic 
field 

Current 

i l 

B

F

Y 

O P Q X 

B 

→ 

i 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

Y 

O P Q X 

iRL ˆ2=′


 and jBB ˆ=


 

)̂(̂2 jiBRiF ××=  

kBiRF ˆ2=


 i.e. BiRF 2=  

(perpendicular to paper outward) 

iRL ˆ2=′


 and )̂( kBB −=


 

∴ )̂(2 jBRiF +×=


 

BiRF 2=  (along Y-axis) 

iRL ˆ2=′


 and  iBB ˆ=


 

So by using )'( BLiF ×=  force on 

the wire 

)̂ˆ)()(2( iiBRiF ×=


 ⇒ 0=F


 

Y 

O P Q X 

B 

→ 

i 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

L 
→ 

B 
→ 

a 

b 
× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

B 
→ 

L 
→ 

i 

F 

a 

b 

Current 

Force 

Magnetic 
field 
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 Force Between Two Parallel Current Carrying Conductors. 

When two long straight conductors carrying currents 1i  and 2i  placed parallel to each other at a distance ‘a’ 

from each other. A mutual force act between them when is given as  

l
a

ii
FFF ×⋅=== 210

21

2

4π
µ

 

where l is the length of that portion of the conductor on which force is to be calculated. 

Hence force per unit length 
a

ii

l

F 210 2

4
⋅=

π
µ

 
m

N
 or 

a

ii

l

F 212
=  

cm

dyne
 

Direction of force : If conductors carries current in same direction, then force between them will be 

attractive. If conductor carries current in opposite direction, then force between them will be repulsive. 

 

     

  

 

Note : ≅  If a = 1m and in free space mN
l

F
/102 7−×=  then Ampii 121 ==  in each identical wire. By this 

concept S.I. unit of Ampere is defined. This is known as Ampere’s law. 

 Force Between Two Moving Charges. 

If two charges q1 and q2 are moving with velocities v1 and v2 respectively and at any instant the distance 

between them is r, then  

 

 

 

Magnetic force between them is 
2

21210 .
4 r

vvqq
Fm π

µ
=   ..... (i) 

and Electric force between them is 
2

21

0

.
4

1

r

qq
Fe πε

=   ..... (ii) 

From equation (i) and (ii) 2
00 v

F

F

e

m εµ=  but 
200

1

c
=εµ ;  where c is the velocity light in vacuum. So 

2







=

c

v

F

F

e

m  

i2 i1 

a 

• • × × 

• • × × 

• •
 

× × 

• • × × 

• • × × 

• • × × 

i2 i1 

2 1 

F2 F1 

× × 

× × 

× × 

× × 

× × 

× × 

i2 

2 

F2 

× × 

× × 

× × 

× × 

× × 

× × 

i1 

1 

F1 

r 

q1 q2 

e
F  

e
F  

Stationary charges 
r q1 q2 

e
F  e

F  

Moving charges 

v1 v2 
mF  mF  

Moving Charge and Magnetism ( Magnetic effects of Current Part 3)

13

TEACHING CARE 



If v << c then Fm << Fe  

 Standard Cases for Force on Current Carrying Conductors. 

Case 1 : When an arbitrary current carrying loop placed in a magnetic field (⊥ to the plane of loop), each 
element of loop experiences a magnetic force due to which loop stretches and open into circular loop and tension 
developed in it’s each part. 

 

 

 

 

 

 

Specific example  

In the above circular loop tension in part A and B.  

In balanced condition of small part AB of the loop is shown below  

  dliBdF
d

T ==
2

sin2
θ

 ⇒ θθ
BiRd

d
T =

2
sin2  

If dθ is small so, 
22

sin
θθ dd

≈  ⇒ θθ
BiRd

d
T =

2
.2  

  BiRT = ,  if LR =π2  so 
π2

BiL
T =  

Note : ≅ If no magnetic field is present, the loop will still open into a circle as in it’s adjacent parts current will 

be in opposite direction and opposite currents repel each other. 

 

 

 
 

Case 2 : Equilibrium of a current carrying conductor : When a finite length current carrying wire is kept 

parallel to another infinite length current carrying wire, it can suspend freely in air as shown below 

 

 

 

 

 

In both the situations for equilibrium of XY it's downward weight = upward magnetic force i.e. .l
h

ii
.

π
μ

mg 210 2

4
=  

i 

i 

Fixed 

h 

Y X 

i1 

i2 

l Movable 

Fixed 

Y X 

i2 

i1 

l 

Movable 

h 

⊗B 

⊗B 

O 

R 

dθ 

A T 
T B 

T 

A B 

dF 

dθ/2 









2
sin

d฀
T  








2
sin

d฀
T  

dθ/2 dθ/2 dθ/2 
T 

i 

O 
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Note : ≅ In the first case if wire XY is slightly displaced from its equilibrium position, it executes SHM and it’s time 

period is given by 
g

h
T π2= . 

≅ If direction of current in movable wire is reversed then it’s instantaneous acceleration produced is 2g ↓. 

Case 3 : Current carrying wire and circular loop : If a current carrying straight wire is placed in the 
magnetic field of current carrying circular loop. 

 

 

 

 

 

 

 
 

Case 4 : Current carrying spring : If current is passed through a spring, then it will contract because 

current will flow through all the turns in the same direction. 

 

 

 

 

 

 

 

Case 5 : Tension less strings : In the following figure the value and direction of current through the 
conductor XY so that strings becomes tensionless? 

Strings becomes tensionless if weight of conductor XY balanced by magnetic force )( mF . 

 

 

 

 

 

Hence direction of current is from X → Y and in balanced condition mgFm =   ⇒ mgliB =  ⇒ 
lB

mg
i =  

Case 6 : A current carrying conductor floating in air such that it is making an angle θ with the direction of 
magnetic field, while magnetic field and conductor both lies in a horizontal plane. 

 

 

Spring 

m 

If current makes to flow through spring, 
then spring will contract and weight lift up 

Spring 

Hg 

– 
+ 

K 

If switch is closed then current start flowing, 
spring will execute oscillation in vertical plane 

i1 

i2 

Wire is placed in the perpendicular magnetic field 
due to coil at it's centre, so it will experience a 

maximum force li
r

i
BilF

2

10

2
×==

µ
 

wire is placed along the axis of coil so magnetic field 
produced by the coil is parallel to the wire. Hence it 
will not experience any force. 

i2 

i1 

d 

l 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× × × × × × × 

× ×    × × 

T T 

B 
→ 

X Y 

String 

l 
m 

i 
X Y 

mg 

Fm 
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       In equilibrium θsinliBmg =  ⇒ 
θsinlB

mg
i =  

 

 

 

Case 7 : Sliding of conducting rod on inclined rails : When a conducting rod slides on conducting rails. 

 

 

 

 

 

In the following situation conducting rod (X, Y) slides at constant velocity if 

θθ sincos mgF =  ⇒ θθ sincos mgliB =  ⇒ θtan
li

mg
B =  

Concepts 
 

 Electric force is an absolute concept while magnetic force is a relative concept for an observer. 

 The nature of force between two parallel charge beams decided by electric force, as it is dominator. The nature of force between 

two parallel current carrying wires decided by magnetic force. 

 

 

 

 

 

 

 

 

 

 

Example: 46 A vertical wire carrying a current in the upward direction is placed in a horizontal magnetic field directed 

towards north. The wire will experience a force directed towards 

(a) North  (b) South  (c) East  (d) West  

Solution : (d)  By applying Flemings left hand rule, direction of force is found towards west.  

 

 

 

mg 

Fm 

θ 

Example

BH i 

N 
W 

E S 

F 

R 

mg θ 

θ 

mg sinθ 

F cosθ 

F 

θ 

B


 

X 

θ 

v 

Y 

In
su

la
te

d
 

st
a
n
d

 i 

i 

i 
+ 

– 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Fe → repulsion  

Fm → attraction  

Fnet → repulsion (Due to this 
force these beams diverges) 

– 

– 

– 

– 

+ 

+ 

+ 

+ 

Fe → attraction   

Fm → repulsion  

Fnet → attraction (Due to this 
force these beams converges) 

i2 i1 

Fnet = Fm only 
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Example: 47 3 A of current is flowing in a linear conductor having a length of 40 cm. The conductor is placed in a magnetic 

field of strength 500 gauss and makes an angle of 30o with the direction of the field. It experiences a force of 

magnitude        [MP PET 1993] 

(a) 3 × 104 N  (b) 3 × 102 N  (c) 3 × 10– 2 N  (d) 3 × 10–4 N  

Solution : (c)  By using θsinBilF =  ⇒ F = (500 × 10–4) × 0.4 × sin 30o  ⇒ 3 × 10–2 N.  

Example: 48 Wires 1 and 2 carrying currents 1t  and 2t  respectively are inclined at an angle θ  to each other. What is the 

force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of 
wire 1        [AIEEE 2002] 

 (a) θ
π

µ
tan,

2
21

0 dlii
r

 

(b) θ
π

µ
sin,

2
21

0 dlii
r

 

(c) θ
π

µ
cos,

2
21

0 dlii
r

 

(d)  θ
π

µ
sin,

4
21

0 dlii
r

 

Solution : (c) Length of the component dl which is parallel to wire (1) is dl cos θ, so force on it  

r

dlii
dl

r

ii
F

π
θµ

θ
π

µ
2

cos
)cos(

2

4
210210 =⋅= . 

Example: 49 A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a 

uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its 

direction are  

(a) 2iBL directed along the negative Z-axis 

(b) 5iBL directed along the positive Z-axis 

(c) iBL direction along the positive Z-axis 

(d) 2iBL directed along the positive Z-axis 

Solution : (c) As PQ and UT are parallel to Q, therefore 0== UTPQ FF  

  The current in TS and RQ are in mutually opposite direction. Hence, 0=− RQTS FF  

 Therefore the force will act only on the segment SR whose value is Bil and it’s direction is +z. 

Alternate method :   

The given shape of the wire can be replaced by a 

straight wire of length l between P and U as shown 

below 

Hence force on replaced wire PU will be BilF =  

and according to FLHR it is directed towards +z-axis 

Example: 50 A conductor in the form of a right angle ABC with AB = 3cm and BC = 4 cm carries a current of 10 A. There 

is a uniform magnetic field of 5T perpendicular to the plane of the conductor. The force on the conductor will 

be         [MP PMT 1997] 

(a) 1.5 N  (b) 2.0 N  (c) 2.5 N  (d)  3.5 N  

 

Z  R 

Q P 

Y 
U T 

B 
→ 

i  
S 

X 

B 
→ 

Z  R 

Q P 

Y 
U T 

i  
S 

X 

P 

U 

F 
→ 

i 

B 
→ 

⇒ 

i1 i2 

dl θ 

r 

  
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Solution : (c)  According to the question figure can be drawn as shown below. 

Force on the conductor ABC = Force on the conductor AC  

        = 5 × 10 × (5 × 10–2)  

        = 2.5 N  

Example: 51 A wire of length l carries a current i along the X-axis. A magnetic field exists which is given as 0BB =  

( )̂ˆˆ kji ++  T. Find the magnitude of the magnetic force acting on the wire 

(a) ilB0  (b) 20 ×liB  (c) liB02  (d)  liB0
2

1
×  

Solution : (b)  By using )( BliF ×=  ⇒ )]ˆˆ(̂[̂)]ˆˆ(̂ˆ[ 00 kjiiilBkjiBiliF ++×=++×=   

⇒          ]̂ˆˆˆˆ[̂0 kijiiiilBF ×+×+×= ]̂ˆ[0 jkilB −=         }̂ˆˆ,̂ˆˆ,0ˆ{̂ jkikjiii −=×=×=×  

It's magnitude ilBF 02=  

Example: 52 A conducting loop carrying a current i is placed in a uniform magnetic field pointing into the plane of the 
paper as shown. The loop will have a tendency to    [IIT-JEE (Screening) 2003]] 

(a) Contract   (b) Expand  

(c) Move towards + ve x-axis  (d) Move towards – ve x-axis 

Solution : (b) Net force on a current carrying loop in uniform magnetic field is zero. Hence the loop can't translate. So, 

options (c) and (d) are wrong. From Flemings left hand rule we can see that if 

magnetic field is perpendicular to paper inwards and current in the loop is 

clockwise (as shown) the magnetic force mF  on each element of the loop is 

radially outwards, or the loops will have a tendency to expand. 

 

Example: 53 A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the 

loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. 

Find the magnetic force on the wire 

(a) Baiπ   

(b) Baiπ4  

(c) Zero  

(d) Baiπ2  

Solution : (d) The direction of the magnetic force will be vertically downwards at each element of the wire.  

Thus F = Bil = Bi (2πa) = 2πiaB. 

Example: 54 A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic 

induction B. Length ab = l and ∠ abc = 45o. The ratio of force on ab and on bc is   

(a) 
2

1
  

(b) 2  

(c) 1 

(d) 
3

2
 

i 
Y 

B a 

l 

B 
→ 

45o 

a 

c i 

i 

b 

i 
Y 

X 

Fm 

→ 
⊗ 

A 

B C 

3 

4 

10 B 
→ 

⊗ 

⇒ 

A 

C 

10 F 

B 
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Solution : (c) Force on portion ab of wire F1 = Bil sin 90o = Bil  

Force on portion bc of wire F2 = Bil
l

Bi o =







45sin

2
. So 1

2

1 =
F

F
. 

Example: 55 Current i flows through a long conducting wire bent at right angle as shown in figure. The magnetic field at a 
point P on the right bisector of the angle XOY at a distance r from O is  

 

(a) 
r

i

π
µ0   

(b) 
r

i

π
µ02

 

(c) )12(
4

0 +
r

i

π
µ

 

(d) )12(
2

.
4

0 +
r

i

π
µ

 

Solution : (d) By using )sin(sin.
4

21
0 φφ
π

µ
+=

r

i
B , from figure 

2
45sin

r
rd o ==  

Magnetic field due to each wire at P  )90sin45(sin
)2/(

.
4

0 oo

r

i
B +=

π
µ

 

)12(.
4

0 +=
r

i

π
µ

 

Hence net magnetic field at P     )12(.
2

)12(.
4

2 00 +=+×=
r

i

r

i
Bnet π

µ
π

µ
 

Example: 56 A long wire A carries a current of 10 amp. Another long wire B, which is parallel to A and separated by 0.1 m 
from A, carries a current of 5 amp. in the opposite direction to that in A. What is the magnitude and nature of 

the force experienced per unit length of B  [ 7
0 104 −×= πµ weber/amp – m]   [MP PET 2000] 

(a) Repulsive force of mN /10 4−  (b) Attractive force of mN /10 4−  

(c) Repulsive force of mN /102 5−×π  (d) Attractive force of mN /102 5−×π  

Solution : (a) By using 
a

ii

l

F 210 2
.

4π
µ

=   

  ⇒  N
l

F 47 10
1.0

5102
10 −− =

××
×=  

Wires are carrying current in opposite direction so the force will be repulsive. 

Example: 57 Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force 

experienced by 10 cm length of wire Q is     [MP PET 1997] 

 

(a) 1.4×10–4 N towards the right  

(b) 1.4×10–4 N towards the left 

(c) 2.6 × 10–4 N to the right  

(d) 2.6×10–4 N to the left  

Solution : (a) Force on wire Q due to R ;  )1010(
)102(

10202
10 2

2

7 −
−

− ××
×

××
×=RF = 2 × 10–4 m (Repulsive) 

10 A 5 A 

0.1 m 

10cm 2cm 

R Q 

10 A 20 A 30 A 

P 

45o 

P 

X 

Y 

r 
i 

O 

d 

i 

45o 

d 

P 
45o 

45o 

X 

Y 

r 

O 
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  Force on wire Q due to P ;  )1010(
)1010(

3010
210 2

2

7 −
−

− ××
×

×
××=PF  = 0.6 × 10–4 N  (Repulsive) 

  Hence net force Fnet = FR – FP = 2 × 10–4 – 0.6 × 10–4 = 1.4 × 10–4 N (towards right i.e. in the direction of RF . 

Example: 58 What is the net force on the coil      [DCE 2000] 

(a) N71025 −×  moving towards wire 

(b) N71025 −×  moving away from wire 

(c) N71035 −×  moving towards wire  

(d) N71035 −×  moving away from wire 

Solution : (a) Force on sides BC and CD cancel each other. 

Force on side AB      NFAB
62

2

7 1031015
102

122
10 −−

−
− ×=××

×
××

×=  

Force on side CD      NFAB
62

2

7 105.01015
1012

122
10 −−

−
− ×=××

×
××

×=  

Hence net force on loop = FAB – FCD = 25 × 10–7 N (towards the wire). 

Example: 59 A long wire AB is placed on a table. Another wire PQ of mass 1.0 g and length 50 cm is set to slide on two 

rails PS and QR. A current of 50A is passed through the wires. At what distance above AB, will the wire PQ be 

in equilibrium  

(a) 25 mm 

(b) 50 mm  

(c) 75 mm 

(d) 100 mm 

Solution : (a)  Suppose in equilibrium wire PQ lies at a distance r above the wire AB 

  Hence in equilibrium Bilmg = il
r

i
mg ×






=⇒

2

4
0

π
µ

⇒  5.0
)50(2

101010
2

73 =
×

×=× −−

r
 ⇒ mmr 25=  

Example: 60 An infinitely long, straight conductor AB is fixed and a current is passed through it. Another movable straight 

wire CD of finite length and carrying current is held perpendicular to it and released. Neglect weight of the 

wire  

(a) The rod CD will move upwards parallel to itself 

(b) The rod CD will move downward parallel to itself 

(c) The rod CD will move upward and turn clockwise at the same time  

(d) The rod CD will move upward and turn anti –clockwise at the same time 

Solution : (c) Since the force on the rod CD is non-uniform it will experience force and torque. From the left hand side it can 

be seen that the force will be upward and torque is clockwise. 
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A current carrying wire LN is bent in the from shown below. If wire carries a current of 10 A and it is placed 
in a magnetic field a 5T which acts perpendicular to the paper outwards then it will experience a force  

(a) Zero  

(b) 5 N  

(c) 30 N  

(d)  20 N  

Solution : (b) The given wire can be replaced by a straight wire as shown below 

 

 

 

 

 

Hence force experienced by the wire F = Bil = 5 × 10 × 0.1 = 5 N  

 
  

A wire, carrying a current i, is kept in YX −  plane along the curve  .
2

sin 





= xAy

λ
π

 A magnetic field 

B exists in the Z-direction find the magnitude of the magnetic force on the portion of the wire between 
0=x  and λ=x  

(a) Biλ  (b) Zero (c) 
2

Biλ
 (d)  Biλ2/3  

Solution : (a) The given curve is a sine curve as shown below. 

The given portion of the curved wire may be treated as a straight wire AB of length λ which experiences 

a magnetic force λBiFm =  

 

 

 

 
 

 

 Current Loop As a Magnetic Dipole. 

A current carrying circular coil behaves as a bar magnet whose magnetic moment is M = NiA; Where N = Number 

of turns in the coil, i = Current through the coil  and A = Area of the coil  

λ Z 

Y 

X 

i 

B A 

x = 0 x = λ 

 Tricky example: 6 

 Tricky example: 5 
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Magnetic moment of a current carrying coil is a vector and it's direction is given by right hand thumb rule  

 

 

 

 
 

Specific examples  

A given length constant current carrying straight wire moulded into different shaped loops. as shown 

         Linear          Square          Equilateral           Circle 

 

 

 

 
 

              l = 4a                   l = 3a                      l = 2πr 

            A = a2                 
2

4

3
aA =                 A = πr2  

        
16

2
2 il

iaM ==      
36

3

4

3 2
2 il

aiM =









=              

π
π

4
)(

2
2 il

riM ==     ←  max. 

 

Note : ≅  For a given perimeter circular shape have maximum area. Hence maximum magnetic 

moment. 

≅ For a any loop or coil B  and M  are always parallel. 

 

 

 

 Behaviour of Current loop In a Magnetic Field. 

(1) Torque  

Consider a rectangular current carrying coil PQRS having N turns and area A, placed in a uniform field B, in 
such a way that the normal )̂(n  to the coil makes an angle θ with the direction of B. the coil experiences a torque 

given by τ = NBiA sinθ . Vectorially BM


×=τ  

(i) τ is zero when θ = 0, i.e., when the plane of the coil is perpendicular to the field. 

(ii) τ is maximum when o90=θ , i.e., the plane of the coil is parallel to the field. 

⇒ NBiA=maxτ  

The above expression is valid for coils of all shapes. 

(2) Workdone  

If coil is rotated through an angle θ from it's equilibrium position then required work. ).cos1( θ−= MBW  It is 

maximum when θ = 180o ⇒ Wmax = 2 MB  

(3) Potential energy 

MB ,  MB ,  

M 

→ Magnetic 
moment 

Current 

PQ = RS 
=i 
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Is given by U = – MB cosθ  ⇒ BMU .=   

Note : ≅ Direction of M  is found by using Right hand thumb rule according to which curl the fingers of right 

hand in the direction of circulation of conventional current, then the thumb gives the direction of M . 

≅Instruments such as electric motor, moving coil galvanometer and tangent galvanometers etc. are 

based on the fact that a current-carrying coil in a uniform magnetic field experiences a torque (or couple). 

 Moving coil galvanometer. 

In a moving coil galvanometer the coil is suspended between the pole pieces of a strong horse-shoe magnet. 

The pole pieces are made cylinderical and a soft iron cylinderical core is placed within the coil without touching it. 

This makes the field radial. In such a field the plane of the coil always remains parallel to the field. Therefore 
o90=θ  and the deflecting torque always has the maximum value. 

 

 

 

 

 

 

   NBiA=defτ   ......(i) 

coil deflects, a restoring torque is set up in the suspension fibre. If α is the angle of twist, the restoring torque is 

   ατ C=rest   .....(ii)      where C is the torsional constant of the fibre. 

When the coil is in equilibrium. 

   NBiA = Cα ⇒ α
NBA

C
i =  ⇒ αKi = , 

Where 
NBA

C
K =  is the galvanometer constant. This linear relationship between i and α makes the moving 

coil galvanometer useful for current measurement and detection. 

Current sensitivity : The current sensitivity of a galvanometer is defined as the deflection produced in the 

galvanometer per unit current flowing through it. 

   
C

NBA

i
Si ==

α
 

Thus in order to increase the sensitivity of a moving coil galvanometer, N, B and A should be increased and C 

should be decreased. 

Quartz fibres can also be used for suspension of the coil because they have large tensile strength and very low 

value of k. 

Voltage sensitivity (SV) : Voltage sensitivity of a galvanometer is defined as the deflection produced in the 
galvanometer per unit applied to it. 

   
RC

NBA

R

S

iRV
S i

V ====
αα
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Concepts 
 

 The field in a moving coil galvanometer radial in nature in order to have a linear relation between the current and the deflection. 

 A rectangular current loop is in an arbitrary orientation in an external magnetic field. No work required to rotate the loop about an axis 

perpendicular to it's plane.  

 Moving coil galvanometer can be made ballistic by using a non-conducting frame (made of ivory or bamboo) instead of a metallic frame. 

 

 

 

Example: 61 A circular coil of radius 4 cm and 20 turns carries a current of 3 ampere. It is placed in a magnetic field of 0.5 
T. The magnetic dipole moment of the coil is      [MP PMT 2001] 

(a) 0.60 A-m2 (b) 0.45 A-m2 (c) 0.3 A-m2 (d) 0.15 A-m2 

Solution : (c) M = niA ⇒ M = 20 × 3 × π ( 4 × 10–2)2 = 0.3 A-m2.  

Example: 62 A steady current i flows in a small square loop of wire of side L in a horizontal plane. The loop is now folded 

about its middle such that half of it lies in a vertical plane. Let 1µ  and 2µ  respectively denote the magnetic 

moments due to the current loop before and after folding. Then    [IIT-JEE 1993] 

(a) 02 =µ    (b) 1µ  and 2µ are in the same direction 

(c) 2
||

||

2

1 =
µ

µ
   (d) 








=

2

1

||

||

2

1

µ

µ
 

Solution : (c) Initially  Finally  

 

 

 

 

 

                                                           M = magnetic moment due to each part 
222
1

2 µ
==×






=

iL
L

L
i  

                                                          ∴ 
2

2
2

2 11
2

µµ
µ =×== M  

Example: 63 A coil of 50 turns is situated in a magnetic field b = 0.25weber/m2 as shown in figure. A current of 2A is 

flowing in the coil. Torque acting on the coil will be  

(a) 0.15 N  

(b) 0.3 N  

(c) 0.45 N  

(d) 0.6 N  

Solution : (b) Since plane of the coil is parallel to magnetic field. So θ = 90o  

Hence τ = NBiA sin 90o = NBiA = 50 × 0.25 × 2 × (12 × 10–2 × 10 × 10–2) = 0.3 N. 

Example: 64 A circular loop of area 1 cm2, carrying a current of 10 A, is placed in a magnetic field of 0.1 T perpendicular to 
the plane of the loop. The torque on the loop due to the magnetic field is  

(a) Zero  (b) 10–4 N-m  (c) 10–2 N-m  (d) 1 N-m  

Solution : (a) τ = NBiA sinθ ; given θ = 0 so τ = 0.  

Example: 65 A circular coil of radius 4 cm has 50 turns. In this coil a current of 2 A is flowing. It is placed in a magnetic field 
of 0.1 weber/m2. The amount of work done in rotating it through 180o from its equilibrium position will be  

N S 

B 
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A B 

D C 

1
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[CPMT 1977] 

(a) 0.1 J  (b) 0.2 J  (c) 0.4 (d) 0.8 J  

Solution : (a) Work done in rotating a coil through an angle θ  from it's equilibrium position is W = MB(1 – cosθ) where θ = 180o 
and M = 50 × 2 × π (4 × 10–2) = 50.24 × 10–2 A-m2.  Hence W = 0.1 J  

Example: 66 A wire of length L is bent in the form of a circular coil and current i is passed through it. If this coil is placed in 
a magnetic field then the torque acting on the coil will be maximum when the number of turns is  

(a) As large as possible  (b) Any number  (c) 2 (d) 1 

Solution : (d) MB=maxτ   or Bani 2
max πτ = . Let number of turns in length l is n so  )2( anl π=   or  

n

l
a

π2
=  

 ⇒ 
22

2

max
4 n

Blni

π
πτ =

min

2

4 n

iBl

π
=     ⇒ 

min
max

1

n
∝τ    ⇒ 1min =n  

Example: 67 A square coil of N turns (with length of each side equal L) carrying current i is placed in a uniform magnetic 

field jBB ˆ
0=  as shown in figure. What is the torque acting on the coil  

(a) kNiLB ˆ2
0+  

(b) kNiLB ˆ2
0−  

(c) jNiLB ˆ2
0+  

(d) jNiLB ˆ2
0−  

Solution : (b) The magnetic field is jBB ˆ
0= and the magnetic moment )̂( 2iNLiAim −==  

The torque is given by Bm ×=τ  

jBiiNL ˆˆ
0

2 ×−= jiLiNB ˆˆ2
0 ×−=  

kLiNB ˆ2
0−=  

Example: 68  The coil of a galvanometer consists of 100 turns and effective area of 1 square cm. The restoring couple is 10– 8 N-m rad. 
The magnetic field between the pole pieces is 5 T. The current sensitivity of this galvanometer will be   

[MP PMT 1997] 

(a) 5 × 104 rad/µ amp (b) 5 × 10– 6 per amp (c) 2 × 10– 7 per amp (d) 5 rad./µ amp  

Solution : (d) Current sensitivity  (Si) = 
C

NBA

i
=

θ
 ⇒ amprad

i
µθ

/5
10

105100
8

4

=
××

=
−

−

. 

Example: 69 The sensitivity of a moving coil galvanometer can be increased by    [SCRA 2000]] 

(a) Increasing the number of turns in the coil  (b) Decreasing the area of the coil  

(c) Increasing the current in the coil  (d) Introducing a soft iron core inside the coil 

Solution : (a) Sensitivity (Si) = 
C

NBA
 ⇒ NSi ∝ . 
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The square loop ABCD, carrying a current i, is placed in uniform magnetic field B, as shown. The loop 

can rotate about the axis XX'. The plane of the loop makes and angle θ (θ < 90°) with the direction of 

B. Through what angle will the loop rotate by itself before the torque on it becomes zero  

 

(a) θ 

(b) 90°– θ 

(c) 90° + θ  

(d) 180°– θ  

 

Solution : (c) In the position shown, AB is outside and CD is inside the plane of the paper. The Ampere force on AB 
acts into the paper. The torque on the loop will be clockwise, as seen from above. The loop must rotate 
through an angle (90o + θ) before the plane of the loop becomes normal to the direction of B and the 
torque becomes zero.  

 

 Tricky example: 7 
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