(2) Manufacture : Acetone is manufactured by following methods:

(i) **By air-oxidation of isopropyl alcohol :** The air oxidation occurs at $500^{\circ}C$.

$$2CH_{3}CHOHCH_{3} + O_{2} \xrightarrow{500^{\circ}C} 2CH_{3}COCH_{3} + 2H_{2}O$$
Isopropyl alcohol
Acetone

(ii) **By dehydrogenation of isopropyl alcohol**: The vapours of isopropyl alcohol are passed over heated copper at $300^{\circ}C$.

$$CH_{3}CHOHCH_{3} \xrightarrow{Cu} CH_{3}COCH_{3} + H_{2}$$

(iii) From propene

(a) *Wacker's process* : The mixture of propene and air under pressure is passed through palladium chloride and cupric chloride solution when acetone is formed.

$$CH_{3}CH = CH_{2} + PdCl_{2} + H_{2}O \longrightarrow CH_{3}COCH_{3} + Pd + 2HCl$$
$$Pd + 2CuCl_{2} \longrightarrow PdCl_{2} + 2CuCl$$

 $4CuCl + 4HCl + O_2 \longrightarrow 4CuCl_2 + 2H_2O$

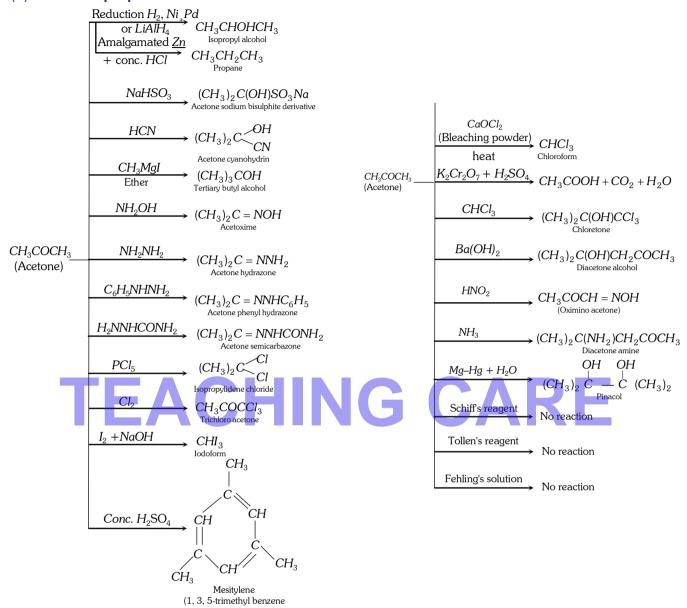
(b) Propene is absorbed in concentrated sulphuric acid and the resulting product is boiled with water when isopropyl alcohol is formed. Isopropyl alcohol on dehydrogenation yields acetone.

$$CH_{3}CH = CH_{2} + H_{2}SO_{4} \longrightarrow CH_{3}CH(HSO_{4})CH_{3} \xrightarrow{H_{2}O} CH_{3}CH(OH)CH_{3} \xrightarrow{Cu} CH_{3}COCH_{3}COCH_{3}$$

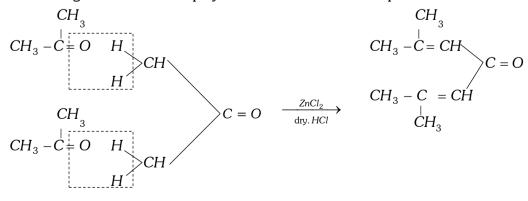
(iv) *From ethyl alcohol* : By passing a mixture of ethyl alcohol vapour and steam over a catalyst, zinc chromite at $500^{\circ}C$, acetone is obtained. The yield is about 80%.

$$2C_2H_5OH + H_2O \xrightarrow{Zn(CrO_2)_2} CH_3COCH_3 + CO_2 + 4H_2$$

(v) **From acetylene** : By passing a mixture of acetylene and steam over a catalyst, magnesium or zinc vanadate at $420^{\circ}C$, acetone is obtained.


$$2CH \equiv CH + 3H_2O \longrightarrow CH_3COCH_3 + CO_2 + 2H_2$$

(vi) *From pyroligneous acid* : Pyroligneous acid containing acetic acid, acetone and methyl alcohol is distilled in copper vessel and the vapours are passed through hot milk of lime. Acetic acid combines to form nonvolatile calcium acetate. The unabsorbed vapours of methanol and acetone are condensed and fractionally distilled. Acetone distills at $56^{\circ}C$.


The acetone thus obtained is purified with the help of sodium bisulphite as described in laboratory preparation.

- (3) **Physical properties :** (i) It is a colourless liquid with characteristic pleasant odour.
- (ii) It is inflammable liquid. It boils at $56^{\circ}C$.
- (iii) It is highly miscible with water, alcohol and ether.

(4) Chemical properties

If acetone would be in excess in ketal condensation or catalyst $(ZnCl_2 / dry HCl)$ is used then three moles of acetone undergoes condensation polymerisation and form a compound called **'Phorone**'.

Molecular mass of phorone = 3 mole of acetone – 2 mole of H_2O

Note : \blacksquare If two moles of acetone are used then Mesityl oxide $(CH_3)_2 C(OH) CH_2 COCH_3$

Reformatsky reaction: This reaction involves the treatment of aldehyde and ketone with a bromo acid ester in presence of metallic zinc to form β -hydroxy ester, which can be easily dehydrated into α , β -unsaturated ester.

(a)
$$BrCH_2COOC_2H_5 + Zn \xrightarrow{\text{Benzene}} Br - Zn \xrightarrow{\oplus} Cn_2COOC_2H_5$$

Organo zinc compound

(b) Addition to carbonyl group

$$CH_{3} \xrightarrow{Zn^{+}Br} C = O + \underset{\Theta}{\overset{L}{C}H_{2}COOC_{2}H_{5}} \longrightarrow CH_{3} - \underset{OZn^{\oplus}Br}{\overset{L}{C} - CH_{2}CH_{2}COOC_{2}H_{5}} \xrightarrow{HOH/H^{+}} CH_{3} - \underset{OL}{\overset{L}{C} - CH_{2}} CH_{2} \xrightarrow{COC_{2}H_{5}} \xrightarrow{HOH/H^{+}} CH_{3} - \underset{OH}{\overset{L}{C} - CH_{2}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} CH_{3} - \underset{OH}{\overset{L}{C} - CH_{2}} \xrightarrow{HOH/H^{+}} CH_{3} - \underset{OH}{\overset{H}{C} - CH_{3}} \xrightarrow{HOH/H^{+}} CH_{3} - \underset{OH}{\overset{H}{C} - CH_{3}} \xrightarrow{HOH/H^{+}} CH_{3} - \underset{OH}{\overset{H}{C} - CH_{3}} \xrightarrow{HOH/H^$$

(5) **Uses**

(i) As a solvent for cellulose acetate, cellulose nitrate, celluloid, lacquers, resins, etc.

(ii) For storing acetylene.

(iii) In the manufacture of cordite – a smoke less powder explosive.

(iv) In the preparation of chloroform, iodoform, sulphonal and chloretone.

(v) As a nailpolish remover.

(vi) In the preparation of an artificial scent (ionone), plexiglass (unbreakable glass) and synthetic rubber.

(6) Tests

(i) *Legal's test*: When a few drops of freshly prepared sodium nitroprusside and sodium hydroxide solution are added to an aqueous solution of acetone, a wine colour is obtained which changes to yellow on standing.

(ii) **Indigo test**: A small amount of orthonitrobenzaldehyde is added to about 2 ml. of acetone and it is diluted with *KOH* solution and stirred. A blue colour of indigotin is produced.

(iii) *lodoform test* : Acetone gives iodoform test with iodine and sodium hydroxide or iodine and ammonium hydroxide.

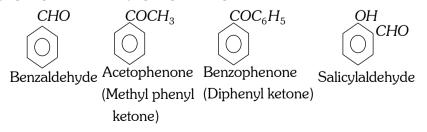
Comparison between Acetaldehyde and Acetone

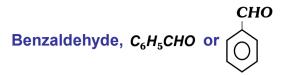
Reaction	Acetaldehyde	Acetone
Similarty		
1. Reduction with H_2 and	Forms ethyl alcohol	Forms isopropyl alcohol
Ni or LiAlH ₄	$CH_{3}CHO + H_{2} \xrightarrow{Ni} CH_{3}CH_{2}OH$	$CH_{3}COCH_{3} + H_{2} \longrightarrow CH_{3}CHOHCH_{3}$
2. Clemmensen's	Forms ethane	Forms propane
reduction	$CH_{3}CHO + 4H \longrightarrow CH_{3}CH_{3} + H_{2}O$	$CH_3COCH_3 + 4H \longrightarrow CH_3CH_2CH_3 + H_2O$
(Zn/Hg and conc. HCl)	5 5 5 2	
3. Addition of HCN	Forms acetaldehyde cyanohydrin	Forms acetone cyanohydrin

$\begin{array}{c} CH_{3}CHO + HCN \longrightarrow CH_{3}CH \swarrow_{CN} & (CH_{3})_{2}CO + HCN \longrightarrow (CH_{3})_{2}C \swarrow \\ \textbf{4. Addition of } NaHSO_{3} & \textbf{White crystalline derivative} & \textbf{White crystalline derivative} \\ \hline CH_{3}CHO + NaHSO_{3} \longrightarrow CH_{3}CH \swarrow_{SO_{3}Na} & (CH_{3})_{2}CO + NaHSO_{3} \longrightarrow (CH_{3})_{2}C \cr \textbf{5. Grignard reagent} & \textbf{Forms isopropyl alcohol} & \textbf{Forms tertiary butyl alcohol} \\ \hline CH_{3}CHO + CH_{3}MgI \longrightarrow (CH_{3})_{2}CH - OMgI & (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH \cr \textbf{6} \cr $	OH CN OH C < OH $SO_3 Na$
$\begin{array}{c} OH\\ CH_{3}CHO + NaHSO_{3} \longrightarrow CH_{3}CH\\ SO_{3}Na \end{array} \qquad (CH_{3})_{2}CO + NaHSO_{3} \longrightarrow (CH_{3})_{2}CH\\ \hline SO_{3}Na \end{array}$ $\begin{array}{c} SO_{3}Na \\ SO_{3}Na \\ Forms tertiary butyl alcohol \\ CH_{3}CHO + CH_{3}MgI \longrightarrow (CH_{3})_{2}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{2}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CO + CH_{3}MgI \longrightarrow (CH_{3})_{3}CH - OMgI \\ \hline (CH_{3})_{3}CH \longrightarrow $	\sim
$\begin{array}{c} CH_{3}CHO + NaHSO_{3} \longrightarrow CH_{3}CHC}{SO_{3}Na} & (CH_{3})_{2}CO + NaHSO_{3} \longrightarrow (CH_{3})_{2}CH_{3}C$	\sim
followed by hydrolysis $CH_3CHO + CH_3MgI \longrightarrow (CH_3)_2CH - OMgI \qquad (CH_3)_2CO + CH_3MgI \longrightarrow (CH_3)_3CH = 0$	
$(CI_3)_2CI + CI_3MgI \longrightarrow (CI_3)_2CI + CII_3MgI \longrightarrow (CII_3)_3CI + CII_3MgI \longrightarrow (CII_3)_3CI + CII_3MgI \longrightarrow (CII_3)_3CI + CII_3MgI \longrightarrow (CII_3)_3CI + CII_3MgI \longrightarrow (CII_3)_2CI + CII_3MgI$	
	COMgI
$\xrightarrow{H_2O} CH_3CHOHCH_3$	$(CH_3)_3 COH$
6. With hydroxylamine Forms acetaldoxime Forms acetoxime	
(NH_2OH) $CH_3CHO + H_2NOH \longrightarrow CH_3CH = NOH$ $(CH_3)_2CO + H_2NOH \longrightarrow (CH_3)_2$	C = NOH
7. With hydrazine Forms acetaldehyde hydrazone Forms acetone hydrazone	
$(NH_2NH_2) \qquad CH_3CHO + H_2NNH_2 \longrightarrow CH_3CH = NNH_2 \qquad (CH_3)_2CO + H_2NNH_2 \longrightarrow (CH_3)_2$	$C = NNH_2$
8. With phenyl hydrazine Forms acetaldehyde phenylhydrazone Forms acetone phenyl hydrazone	2
$(C_6H_5NHNH_2) \qquad \qquad CH_3CHO + H_2NNHC_6H_5 \longrightarrow \qquad (CH_3)_2CO + H_2NNHC_6H_5 \longrightarrow$	
$CH_3CH = NNHC_6H_5 \qquad (CH_3)_2C =$	= NNHC ₆ H ₅
9. With semicarbazide Forms acetaldehyde semicarbazone Forms acetone semicarbazone	
$(H_2NNHCONH_2) \qquad \qquad CH_3CHO + H_2NNHCONH_2 \longrightarrow \qquad (CH_3)_2CO + H_2NNHCONH_2 \longrightarrow $	
$CH_{3}CH = NNHCONH_{2}$ $(CH_{3})_{2}C = I$	NNHCONH ₂
10. With PCl ₅ Forms ethylidene chloride Forms isopropylidene chloride	
CI $CH_{3}CHO + PCI_{5} \longrightarrow CH_{3}CH $ $(CH_{3})_{2}CO + PCI_{5} \longrightarrow (CH_{3})_{2}C $	
$CH_{3}CHO + PCI_{5} \longrightarrow CH_{3}CH $ $(CH_{3})_{2}CO + PCI_{5} \longrightarrow (CH_{3})_{2}C $	
11. With chlorine Forms chloral Forms trichloro acetone	
$CH_{3}CHO + Cl_{2} \longrightarrow CCl_{3}CHO \qquad CH_{3}COCH_{3} + Cl_{2} \longrightarrow CCl_{3}COCH_{3}$	
12. With alcohols Forms acetal Forms ketal	3
OC_2H_5	$9C_2H_5$
$CH_{3}CHO + 2C_{2}H_{5}OH \longrightarrow CH_{3}CH \qquad (CH_{3})_{2}CO + 2C_{2}H_{5}OH \longrightarrow (CH_{3})_{2}$	\mathcal{C}
OC_2H_5	OC_2H_5
13. With SeO2 Forms glyoxal Forms methyl glyoxal	
$CH_{3}CHO + SeO_{2} \longrightarrow CHOCHO + Se + H_{2}O \qquad (CH_{3})_{2}CO + SeO_{2} \longrightarrow CH_{3}COCHO$	$O + Se + H_2O$
14. Iodoform reaction Forms iodoform Forms iodoform	
$\frac{(I_2 + \text{NaOH})}{(I_2 + \text{NaOH})}$	
15. Bleaching powder Forms chloroform Forms chloroform	
16. Aldol condensation Forms aldol Forms diacetone alcohol	
with mild alkali $2CH_3CHO \longrightarrow CH_3CHOHCH_2CHO$ $2CH_3COCH_3 \longrightarrow (CH_3)_2C(OH)CH_2CHO$	2COCH3
17. Polymerisation Undergoes polymerisation Does not undergo polymerisation condensation reaction	n but gives
18. With NH ₃ Forms acetaldehyde ammonia Forms diacetone ammonia	

	$CH_{3}CHO + NH_{3} \longrightarrow CH_{3}CH \begin{pmatrix} OH \\ \\ NH_{2} \end{pmatrix}$	$(CH_3)_2CO + NH_3 + OC(CH_3)_2 \longrightarrow$ $(CH_3)_2C(NH_2)CH_2COCH_3$
19. With conc. NaOH	Forms brownish resinous mass	No reaction
20. With HNO ₂	No reaction	Forms oximino acetone
		$CH_{3}COCH_{3} + HNO_{2} \longrightarrow CH_{3}COCH = NOH$
21. With chloroform	No reaction	Forms chloretone
		$(CH_3)_2CO + CHCl_3 \longrightarrow (CH_3)_2C \qquad OH \\ CCl_3$
22. With alk. sodium nitroprusside	Deep red colour	Red colour changes to yellow on standing
23. With sodium nitroprusside + Pyridine	Blue colour	No effect
24. Boiling point	21°C	56° <i>C</i>

Difference				
 With Schiff's reagent With Fehling's solution With Tollen's reagent 	Pink colour Gives red precipitate Gives silver mirror	Does not give pink colour No reaction No reaction		
4. Oxidation with acidified	Easily oxidised to acetic acid	Oxidation occurs with difficulty to form		
$K_2Cr_2O_7$	$CH_{3}CHO + O \longrightarrow CH_{3}COOH$	acetic acid		
		$CH_3COCH_3 + O \longrightarrow CH_3COOH + CO_2 + H_2O$		


Aromatic Carbonyl Compounds.


Aromatic aldehydes are of two types :

The compounds in which -CHO group is attached directly to an aromatic ring, e.g., benzaldehyde, C_6H_5CHO .

Those in which aldehyde (-CHO) group is attached to side chain, *e.g.*, phenyl acetaldehyde, $C_6H_5CH_2CHO$. They closely resemble with aliphatic aldehydes.

Aromatic ketones are compounds in which a carbonyl group (>C = O) is attached to either two aryl groups or one aryl group and one alkyl group. Examples are :

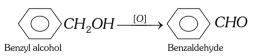
Benzaldehyde is the simplest aromatic aldehyde. It occurs in bitter almonds in the form of its glucoside, **amygdalin** ($C_{20}H_{27}O_{11}N$). When amygdalin is boiled with dilute acids, it hydrolyses into benzaldehyde, glucose and *HCN*

$$CN \xrightarrow[C_6H_5CHOC_{12}H_{21}O_{10} + 2H_2O \longrightarrow C_6H_5CHO + 2C_6H_{12}O_6 + HCN$$
Amygdalin
Benzaldehyde
Glucose

Benzaldehyde is also known as oil of bitter almonds.

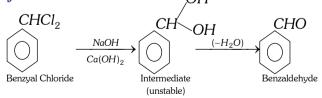
(1) Method of preparation

(i) *Laboratory method* : It is conveniently prepared by boiling benzyl chloride with copper nitrate or lead nitrate solution in a current of carbon dioxide.


 $2C_{6}H_{5}CH_{2}Cl + Cu(NO_{3})_{2} \xrightarrow{\text{heat}} 2C_{6}H_{5}CHO + CuCl_{2} + 2HNO_{2} \qquad [2HNO_{2} \longrightarrow NO + NO_{2} + H_{2}O]$ $\xrightarrow{\text{Benzyl chloride}} Pb(\overrightarrow{NO_{3}})_{2} \xrightarrow{\text{or}} Pb(\overrightarrow{NO_{3}})_{2}$

(ii) **Rosenmund reaction :** $C_6H_5COCl + H_2 \xrightarrow{Pd/BaSO_4} C_6H_5CHO + HCl$

(iii) By dry distillation of a mixture of calcium benzoate and calcium formate


$$C_{6}H_{5} \stackrel{O}{[COO} \stackrel{O}{Ca+Ca} \stackrel{O}{Ca+Ca} \stackrel{O}{CH} \stackrel{heat}{\to} 2C_{6}H_{5}CHO+2CaCO_{3}$$
Ca+Ca O CH $\stackrel{heat}{\cup} O \stackrel{O}{O} \stackrel{O}{\to} \stackrel{heat}{\to} 2C_{6}H_{5}CHO+2CaCO_{3}$

(iv) **By oxidation of benzyl alcohol :** This involves the treatment of benzyl alcohol with dil. HNO_3 or acidic potassium dichromate or chromic anhydride in acetic anhydride or with copper catalyst at $350^{\circ}C$.

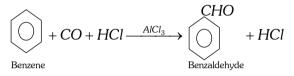
This method is used for commercial production of benzaldehyde.

(v) **By hydrolysis of benzal chloride :**

This is also an industrial method.

(vi) By oxidation of Toluene

$$(\bigcirc) + O_2 \xrightarrow{V_2O_5} (\bigcirc) + H_2O$$


Commercially the oxidation of toluene is done with air and diluted with nitrogen (to prevent complete oxidation) at $500^{\circ}C$ in the presence of oxides of Mn, Mo or Zr as catalyst.

Partial oxidation of toluene with manganese dioxide and dilute sulphuric acid at $35^{\circ}C$, also forms benzaldehyde.

$$C_{6}H_{5}CH_{3} \xrightarrow[(CH_{3}CO)_{2}O]{} C_{6}H_{5}CH(OCOCH_{3})_{2} \xrightarrow[H^{+}/H_{2}O]{} C_{6}H_{5}CHO + 2CH_{3}COOH$$

(vii) **Etard's reaction**: $C_6H_5CH_3 + 2CrO_2Cl_2 \longrightarrow C_6H_5CH_32CrO_2Cl_2 \xrightarrow{H_2O} C_6H_5CHO_{Brown addition product} \xrightarrow{H_2O} C_6H_5CHO_{Benzaldehyde}$

(viii) **Gattermann-koch aldehyde synthesis**: Benzene is converted into benzaldehyde by passing a mixture of carbon monoxide and *HCl* gas under high pressure into the ether solution of benzene in presence of anhydrous aluminium chloride and cuprous chloride.

(ix) Gattermann reaction

$$HC \equiv N + HCl + AlCl_{3} \longrightarrow HC = NH + AlCl_{4}^{-}; C_{6}H_{5}H + HC = NH \longrightarrow C_{6}H_{5}CH = NH_{2}$$

$$C_{6}H_{5}CH = NH_{2} + H_{2}O + AlCl_{4}^{-} \longrightarrow C_{6}H_{5}CHO + NH_{3} + AlCl_{3} + HCl$$

$$HCN + HCl + H_{2}O \xrightarrow{AlCl_{3}} O + NH_{4}Cl$$

(x) **Stephen's reaction**: Benzaldehyde is obtained by partial reduction of phenyl cyanide with stannous chloride and passing dry *HCl* gas in ether solution followed by hydrolysis of the aldimine stannic chloride with water.

$$C_{6}H_{5}C \equiv N \xrightarrow{HCl/SnCl_{2}} [C_{6}H_{5}CH = NH]_{2}H_{2}SnCl_{6} \xrightarrow{H_{2}O} 2C_{6}H_{5}CHO$$


$$\xrightarrow{Hcl/SnCl_{2}} Ether \xrightarrow{Hcl/SnCl_{2}} [C_{6}H_{5}CH = NH]_{2}H_{2}SnCl_{6} \xrightarrow{H_{2}O} 2C_{6}H_{5}CHO$$

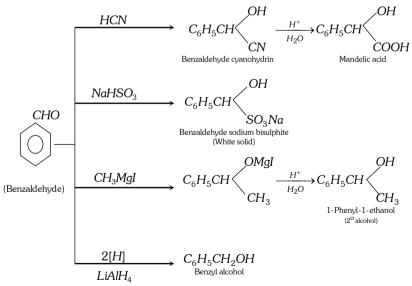
(xi) By ozonolysis of styrene

$$C_{6}H_{5}CH = CH_{2} \xrightarrow{O_{3}} C_{6}H_{5} - CH \xrightarrow{CH_{2}} CH_{2} \xrightarrow{H_{2}O} C_{6}H_{5}CHO + HCHO + H_{2}O_{2}$$

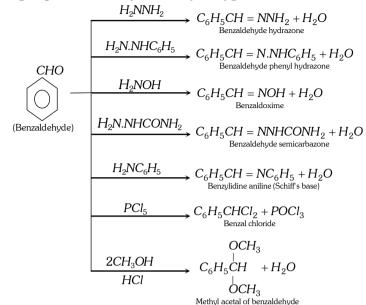
(xii) Grignard reaction
$$H_{COC_{2}H_{5}}^{U} + BrMgC_{6}H_{5} \xrightarrow{O} C_{6}H_{5}C - H + Mg \xrightarrow{H_{2}O} C_{6}H_{5}C - H + Mg \xrightarrow{C} C_{6}H_{5}C - H + Mg \xrightarrow{C} C_{2}H_{5}$$

Other reagents like carbon monoxide or HCN can also be used.

(xiii) From Diazonium salt



(2) Physical properties


- (i) Benzaldehyde is a colourless oily liquid. Its boiling point is $179^{\circ}C$.
- (ii) It has smell of bitter almonds.
- (iii) It is sparingly soluble in water but highly soluble in organic solvents.
- (iv) It is steam volatile.
- (v) It is heavier than water (sp. gr. 1.0504 at $15^{\circ}C$).
- (vi) It is poisonous in nature.
- (3) Chemical properties
- (i) Addition reaction: The carbonyl group is polar as oxygen is more electronegative than carbon,

Thus, The positive part of the polar reagent always goes to the carbonyl oxygen and negative part goes to carbonyl carbon.

However on reduction with sodium amalgam and water, it gives hydrobenzoin,

(ii) Reactions involving replacement of carbonyl oxygen

(iii) **Oxidation** : Benzaldehyde is readily oxidised to benzoic acid even on exposure to air.

 $C_6H_5CHO \xrightarrow{[O]} C_6H_5COOH$

Acidified $K_2Cr_2O_7$, alkaline $KMnO_4$ and dilute HNO_3 can be used as oxidising agents for oxidation.

(iv) **Reducing properties** : Benzaldehyde is a weak reducing agent. It reduces ammonical silver nitrate solution (Tollen's reagent) to give silver mirror but does not reduce Fehling's solution.

$$C_6H_5CHO + Ag_2O \longrightarrow 2Ag + C_6H_5COOH$$

Benzaldehyde Benzoic acid

(v) Clemmensen's reduction : With amalgamated zinc and conc. HCl, benzaldehyde is reduced to toluene.

$$C_6H_5CHO + 4H \xrightarrow{Zn-Hg} C_6H_5CH_3 + H_2C$$

(vi) **Schiffs reaction:** It restores pink colour to Schiff's reagent (aqueous solution of *p*-rosaniline hydrochloride decolourised by passing sulphur dioxide).

(vii) **Tischenko reaction** : On heating benzaldehyde with aluminium alkoxide (ethoxide) and a little of anhydrous $AlCl_3$ or $ZnCl_2$, it undergoes an intermolecular oxidation and reduction (like aliphatic aldehydes) to form acid and alcohol respectively as such and react to produce benzyl benzoate (an ester).

$$2C_{6}H_{5}CHO \xrightarrow{Al(OC_{2}H_{5})_{3}} C_{6}H_{5}CH_{2}OOCC_{6}H_{5}$$

Benzaldehyde Benzyl benzoate (ester)

(viii) Reactions in which benzaldehyde differs from aliphatic aldehydes

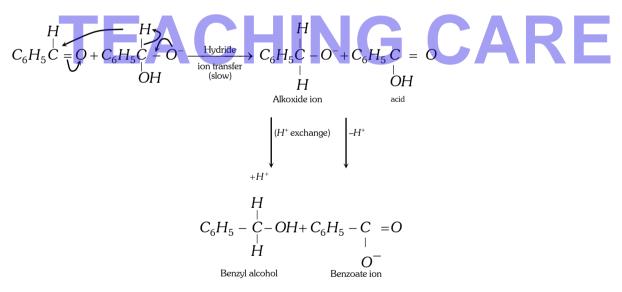
(a) With fehling's solution : No reaction

(b) Action of chlorine : Benzoyl chloride is formed when chlorine is passed through benzaldehyde at its boiling point in absence of halogen carrier. This is because in benzaldehyde there is no α -hydrogen atom present which could be replaced by chlorine.

$$C_6H_5CHO + Cl_2 \xrightarrow{170^\circ C} C_6H_5COCl + HCl$$

(c) Reaction with ammonia

$$C_{6}H_{5}CH \underbrace{\overline{O} + H_{2}}_{l} N \underbrace{\overline{H}}_{l} + O \underbrace{HCC_{6}H_{5}}_{l} + O \underbrace{HCC_{6}H_{5}}_{l} \longrightarrow C_{6}H_{5}CH = N \\ C_{6}H_{5}CH \underbrace{\overline{O} + H_{2}}_{l} N \underbrace{\overline{H}}_{l} - \underbrace{I}_{l} C_{6}H_{5}CH = N \\ C_{6}H_{5}CH = N \\ Hydrobenzamide$$

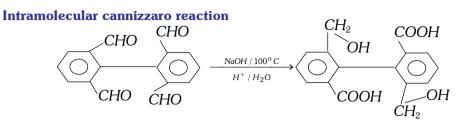

(d) Cannizzaro's reaction : $2C_6H_5CHO \xrightarrow{KOH} C_6H_5CH_2OH + C_6H_5COOK$ Benzyl alcohol Potassium benzoate

The possible Mechanism is

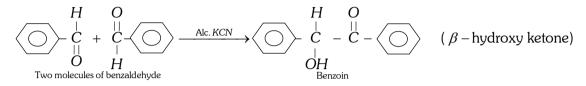
First step is the reversible addition of hydroxide ion to carbonyl group.

$$C_{6}H_{5} - C_{6} = O + OH \xrightarrow{\text{(Fast)}} C_{6}H_{5} - C_{6}H_{5} - O^{-}$$

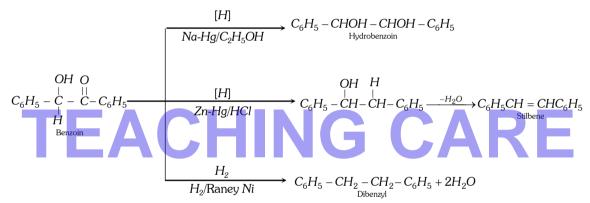
Second step is the transfer of hydride ion directly to the another aldehyde molecule, the latter is thus reduced to alkoxide ion and the former (ion *I*) is oxidised to an acid.


Third Step is exchange of protons to give most stable pair alcohol and acid anion.

So one molecule of aldehyde acts as hydride donar and the other acts as hydride acceptor. In other words, Cannizzaro's reaction is an example of self reduction and oxidation.


Note : Two different aldehydes each having no α -hydrogen atom, exhibit crossed Cannizzaro's reaction when heated in alkaline solution.

$$\begin{array}{c} C_{6}H_{5}CHO + HCHO & \xrightarrow{NaOH} \\ Benzaldehyde & \xrightarrow{heat} \end{array} \\ C_{6}H_{5}CH_{2}OH + HCOONa \\ Benzyl alcohol & Sod. formate \end{array}$$


Aldehyde which do not have α - hydrogen ($C_6H_5 - CHO, CCl_3CHO, (CH_3)_3C - CHO, CH_2O$ etc. undergoes Cannizzaro's reaction.

(e) Benzoin Condensation

Benzoin can also be reduced to a number of product i.e.,

Benzoin can be readily oxidised to a diketone, i.e, benzil.

$$\begin{array}{c} C_{6}H_{5}-CH-C-C_{6}H_{5}+[O] \xrightarrow{CuSO_{4}} C_{6}H_{5}-C-C-C_{6}H_{5} \\ OH O & H_{2}O & O \\ Benzoin & H_{2}O & O \\ \end{array}$$

(f) Perkin's reaction

$$C_{6}H_{5}CHO + H_{2}CHCOOCOCH_{3} \xrightarrow{CH_{3}COONa} + C_{6}H_{5}CH = CHCOOCOCH_{3}$$

$$\xrightarrow{H_{2}O} + C_{6}H_{5}CH = CHCOOH + CH_{3}COOH + CH_{3}COOH + CH_{3}COOH + CH_{2}COOH + CH_{2}COOH + CH_{2}COOH + CH_{2}COOH + CH_{2}COOH + CH_{3}CH + CH_{3}$$

Mechanism

$$CH_3CO.O.COCH_3 + CH_3COO \rightleftharpoons H_2CO.O.COCH_3 + CH_3COOH$$

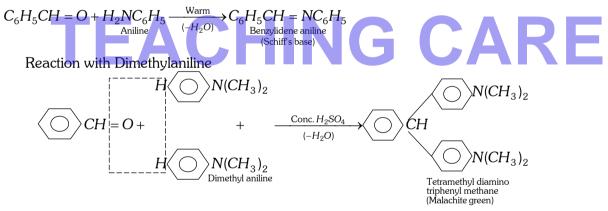
$$C_{6}H_{5} - C_{7}C_{6}H_{2}CO.0.COCH_{3} = C_{6}H_{5} - C_{7}C_{7}C_{1}CH_{2}CO.0.COCH_{3} = C_{6}H_{5} - C_{7}C_{1}CH_{2}CO.0.COCH_{3} = C_{6}H_{5} - C_{7}C_{1}CH_{2}CO.0.COCH_{3} = C_{7}C_{1}CH_{2}CH_{2}CH_{2}CH_{3}CH_{3} = C_{7}CH_{2}CH_{3}CH_{$$

$$CH_{3}COOH + C_{6}H_{5}CH = CHCOOH \xleftarrow{\text{hyrolysis}} C_{6}H_{5}CH = CHCO.O.COCH_{3}$$

(g) Claisen condensation [Claisen-schmidt reaction]

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$C_{6}H_{5}CHO + H_{2}C - CHO \xrightarrow{NaOH} C_{6}H_{5}CH = C - CHO + H_{2}O$$


$$Propionaldehyde \qquad C_{6}H_{5}CHO + H_{2}CHCOCH_{3} \xrightarrow{NaOH(Dil.)} C_{6}H_{5}CH = CHCOCH_{3} + H_{2}O$$

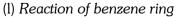
$$Benzylidene acetone$$
(h) Knoevenagel reaction

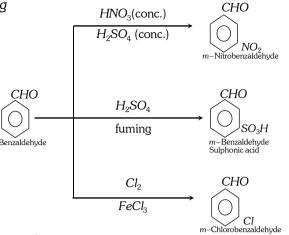
 $C_{6}H_{5}CH = \begin{bmatrix} \overline{O} + \overline{H_{2}} \end{bmatrix} C \underbrace{COOH}_{COOH} \xrightarrow{Pyridine} C_{6}H_{5}CH = CHCOOH + CO_{2} + H_{2}O$

Malonic acid

(i) Reaction with aniline : Benzaldehyde reacts with aniline and forms Schiff's base

(j) Reaction with Ammonia : Benzaldehyde reacts with ammonia to form hydrobenzamide aldehyde other than CH_2O give aldehyde ammonia while CH_2O forms urotropine.


$$C_{6}H_{5} - CHO + H_{2}NH \xrightarrow{O=CH-C_{6}H_{5}} C_{6}H_{5} - CH = N \xrightarrow{CH} C_{6}H_{5}$$


$$C_{6}H_{5} - CH = N \xrightarrow{CH} CH - C_{6}H_{5}$$

$$Hydrobenzamide$$

(k) Reformatsky reaction

$$C_{6}H_{5}CH = O + Zn + Br \overset{\alpha}{C}H_{2}COOC_{2}H_{5} \longrightarrow C_{6}H_{5}CHCH_{2}COOC_{2}H_{5} \xrightarrow{H_{2}O} C_{6}H_{5} - CH - CH_{2}COOC_{2}H_{5} - CH - CH - C$$

(4) Uses : Benzaldehyde is used,

(i) In perfumery

(ii) In manufacture of dyes

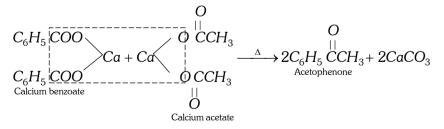
(iii) In manufacture of benzoic acid, cinnamic acid, cinnamaldehyde, Schiff's base, etc.

(5) **Tests** : (i) Benzaldehyde forms a white precipitate with $NaHSO_3$ solution.

(ii) Benzaldehyde forms a yellow precipitate with 2 : 4 dinitrophenyl hydrazine.

- (iii) Benzaldehyde gives pink colour with Schiff's reagent.
- (iv) Benzaldehyde forms black precipitate or silver mirror with Tollen's reagent.

(v) Benzaldehyde on treatment with alkaline $KMnO_4$ and subsequent acidification gives a white precipitate of benzoic acid on cooling.


Acetophenone, C₆H₅COCH₃, Acetyl Benzene

(1) Method of preparation

(i) *Friedel-Craft's reaction* : Acetyl chloride reacts with benzene in presence of anhydrous aluminium chloride to form acetophenone.

$$\begin{array}{ccc} C_{6}H_{5} & \hline H + \overline{Cl} & COCH_{3} & \xrightarrow{AlCl_{3}} & C_{6}H_{5}COCH_{3} + HCl \\ & & & & & & & \\ Benzene & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$$

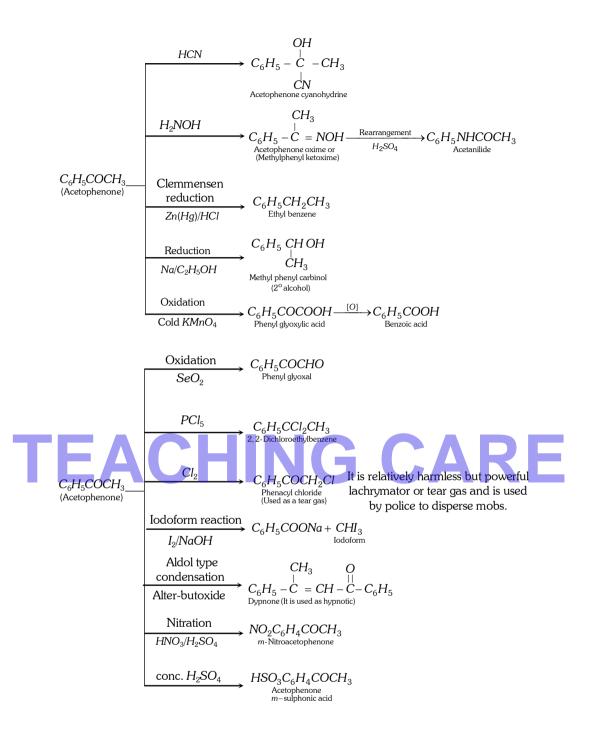
(ii) By distillation of a mixture of calcium benzoate and calcium acetate.

(iii) By methylation of benzaldehyde with diazomethane.

 $C_6H_5CHO + CH_2N_2 \longrightarrow C_6H_5COCH_3 + N_2$

(iv) By treating benzoyl chloride with dimethyl cadmium.

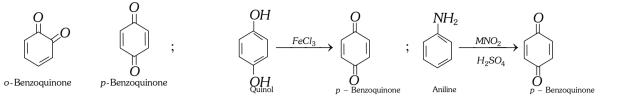
$$2C_{6}H_{5}COCl + (CH_{3})_{2}Cd \longrightarrow 2C_{6}H_{5}COCH_{3} + CdCl_{2}$$
(v) **By Grignard reagent**
(a) $CH_{3}C \equiv N + C_{6}H_{5}MgBr \longrightarrow CH_{3}C = NMgBr \xrightarrow{H_{2}O} C_{6}H_{5}$


$$C_{6}H_{5}COCH_{3} + NH_{3} + Mg(OH)Br$$
(b) $C_{6}H_{5}MgBr + H_{5}C_{2}O \overset{O}{C}CH_{3} \longrightarrow C_{6}H_{5}\overset{O}{C}CH_{3} + Mg \overset{Br}{O}C_{2}H_{5}$
Ethyl acetate

(vi) **Commercial preparation :** Ethylbenzene is oxidised with air at $126^{\circ}C$ under pressure in presence of a catalyst manganese acetate.

$$\bigcirc CH_2CH_3 \\ + O_2 \xrightarrow[126^\circ C \text{ pressure}]{COCH_3} + H_2O$$

(2) **Physical properties** : It is a colourless crystalline compound with melting point $202^{\circ}C$ and boiling point $20^{\circ}C$. It has characteristic pleasant odour. It is slightly soluble in water. Chemically, It is similar to acetone.


(4) **Uses**: It is used in perfumery and as a sleep producing drug.

Quinones

Quinones are unsaturated cyclic diketones. Two quinones of benzene are possible (m-benzoquinone is not possible as it is not possible to construct such formula by maintaining tetravalency of carbon).

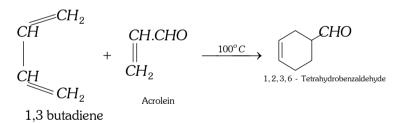
Note that quinones are *non-aromatic conjugated cyclic diketones*. Since they are highly conjugated they are highly **coloured substances**.

p-Benzoquinone, being the most important, is commonly known as quinone. It is prepared by the oxidation of hydroquinone or aniline.

[[]Laboratory method]

α , β -Unsaturated carbonyl compounds

 α , β -Unsaturated carbonyl compounds. As the name represents these compounds contain unsaturation between


O

 α -and β -carbon atoms with respect to carbonyl group, *i.e.*, $-\overset{i}{C} = \overset{i}{C} - \overset{ii}{C} -$. Such molecules are quite stable due to the presence of conjugated system of double bond. Such molecules give properties of the double bond, carbonyl group and some additional properties due to the interaction of the two groups. Due to electron withdrawing nature of the > C = O group, the reactivity of C = C towards electrophilic reagents decreases as compared to an isolated double bond. On the other hand, C = C group undergoes nucleophilic addition reactions which are uncommon for simple alkenes.

Two important addition reactions of α , β -unsaturated carbonyl compounds are Michael reaction and Diels-Alder reaction.

Diel's-Alder reaction

