
Introduction. 

Heat energy transfers from a body at higher temperature to a body at lower temperature. The transfer of heat 

from one body to another may take place by one of the following modes.  
 

Conduction Convection Radiation 

Heat flows from hot end to cold end. 

Particles of the medium simply 
oscillate but do not leave their place.  

Each particle absorbing heat is 
mobile  

Heat flows without any intervening 

medium in the form of electromagnetic 
waves. 

Medium is necessary for conduction  Medium is necessary for convection  Medium is not necessary for radiation  

It is a slow process  It is also a slow process  It is a very fast process  

Path of heat flow may be zig-zag Path may be zig-zag or curved Path is a straight line 

Conduction takes place in solids  Convection takes place in fluids  Radiation takes place in gaseous 
and transparent media  

The temperature of the medium 
increases through which heat flows  

In this process also the temperature 
of medium increases  

There is no change in the 
temperature of the medium  

 

Conduction. 

The process of transmission of heat energy in which the heat is transferred from one particle to other particle 
without dislocation of the particle from their equilibrium position is called conduction. 

(i) Conduction is a process which is possible in all states of matter. 

(ii) In solids only conduction takes place. 

(iii) In non-metallic solids and fluids the conduction takes place only due to vibrations of molecules, therefore 
they are poor conductors. 

(iv) In metallic solids free electrons carry the heat energy, therefore they are good conductor of heat.  

(1) Variable and steady state 

When one end of a metallic rod is heated, heat flows by conduction from the hot end to the cold end. 

In the process of conduction each cross-section of the rod receives heat from the adjacent cross-section 

towards the hot end. A part of this heat is absorbed by the cross-section itself whose temperature increases, another 
part is lost into atmosphere by convection & radiation and the rest is conducted away to the next cross-section.  

Because in this state temperature of every cross-section of the rod goes on increasing, hence rod is said to exist 
in variable state. 
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After sometime, a state is reached when the temperature of every cross-section of the rod becomes constant. 
In this state, no heat is absorbed by the rod. The heat that reaches any cross-section is transmitted to the next 
except that a small part of heat is lost to surrounding from the sides by convection & radiation. This state of the rod 

in which no part of rod absorbs heat is called steady state. 

(2) Isothermal surface 

Any surface (within a conductor) having its all points at the same temperature, is called isothermal surface. The 

direction of flow of heat through a conductor at any point is perpendicular to the isothermal surface passing through 
that point.  

(i) If the material is rectangular or cylindrical rod, the isothermal surface is a plane surface. 

(ii) If a point source of heat is situated at the centre of a sphere the isothermal surface will be spherical, 

(iii) If steam passes along the axis of the hollow cylinder, heat will flow through the walls of the cylinder so that 

in this condition the isothermal surface will be cylindrical. 

 

 

 

 

 

 

(3) Temperature Gradient 

The rate of change of temperature with distance between two 

isothermal surfaces is called temperature gradient. 

If the temperature of two isothermal surfaces be θ  and )( θθ ∆− , and 

the perpendicular distance between them be x∆  then Temperature 

gradient = 
x∆
−∆− θθθ )(

 = 
x∆
∆− θ

  

The negative sign show that temperature θ  decreases as the distance x increases in the direction of heat 

flow. 

Unit : K/m (S.I.) and Dimensions : ][ 1θ−L  

Hot end Cold end 

Metallic rod 

T
em

pe
ra

tu
re

 

Distance from hotter end 

Spherical isothermal surface 

S 

Cylindrical isothermal surface 
Plane isothermal surfaces 

Q Q Q Q 

Q 

∆x 

θ (θ – ∆θ ) 
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(4) Coefficient of thermal conductivity 

If L be the length of the rod, A the area of cross-section and θ1 and θ2 are the temperature of its two faces, 

then the amount of heat flowing from one face to the other face in time t is given by  

   
l

tKA
Q

)( 21 θθ −
=  

Where K is coefficient of thermal conductivity of material of rod. It is the 
measure of the ability of a substance to conduct heat through it.  

If A = 1m2, (θ1 – θ2) = 1oC, t = 1 sec and l = 1m, then Q = K.  

Thus, thermal conductivity of a material is the amount of heat flowing per second during steady state through 
its rod of length 1 m and cross-section 1 m2 with a unit temperature difference between the opposite faces. 

(i) Units :  Cal/cm-sec oC  (in C.G.S.), kcal/m-sec-K (in M.K.S.) and W/m- K (in S.I.) 

(ii) Dimension : ][ 13 −− θMLT  

(iii) The magnitude of K depends only on nature of the material. 

(iv) For perfect conductors, ∞=K  and for perfect insulators, 0=K  

(v) Substances in which heat flows quickly and easily are known as good conductor of heat. They possesses 
large thermal conductivity due to large number of free electrons. Example : Silver, brass etc.  

(vi) Substances which do not permit easy flow of heat are called bad conductors. They possess low thermal 
conductivity due to very few free electrons. Example : Glass, wood etc. 

(vii) The thermal conductivity of pure metals decreases with rise in temperature but for alloys thermal 
conductivity increases with increase of temperature. 

(viii) Human body is a bad conductor of heat (but it is a good conductor of electricity). 

(5) Applications of conductivity in daily life 

(i) Cooking utensils are provided with wooden handles, because wood is a 

poor conductor of heat. The hot utensils can be easily handled from the 
wooden handles and our hands are saved from burning. 

(ii) We feel warmer in a fur coat. The air enclosed in the fur coat being 

bad conductor heat does not allow the body heat to flow outside. Hence we feel 
warmer in a fur coat. 

(iii) Eskimos make double walled houses of the blocks of ice. Air enclosed 
in between the double walls prevents transmission of heat from the house to the 
cold surroundings. 

For exactly the same reason, two thin blankets are warmer than one 

blanket of their combined thickness. The layer of air enclosed in between the 
two blankets makes the difference. 

θ1 θ2 

Q 

l 

A 

Frying pan 
Wooden 
handle 
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(iv) Wire gauze is placed over the flame of Bunsen burner while heating the flask or a beaker so that the flame 

does not go beyond the gauze and hence there is no direct contact between the 
flame and the flask. The wire gauze being a good conductor of heat, absorb the 
heat of the flame and transmit it to the flask. 

Davy's safety lamp has been designed on this principle. The gases in the 

mines burn inside the gauze placed around the flame of the lamp. The 
temperature outside the gauze is not high, so the gases outside the gauze do not catch fire.    

(v) Birds often swell their feathers in winter. By doing so, they enclose more air between their bodies and the 

feathers. The air, being bad conductor of heat prevents the out flow of their body heat. Thus, birds feel warmer in 
winter by swelling their feathers. 

(6) Relation between temperature gradient and thermal conductivity 

In steady state, rate of flow of heat 
dx
d

KA
dt
dQ θ

−=      = – KA (Temperature gradient)        

If 
dt
dQ

 is constant then temperature gradient 
K
1

∝  

Temperature difference between the hot end and the cold end in steady state is inversely proportional to K, 
i.e. in case of good conductors temperature of the cold end will be very near to hot end.  

In ideal conductor where K = ∞, temperature difference in steady state will be zero. 

(7) Wiedmann-Franz law 

At a given temperature T, the ratio of thermal conductivity to electrical conductivity is constant i.e., )/( TK σ = 

constant, i.e., a substance which is a good conductor of heat (e.g., silver) is also a good conductor of electricity. 
Mica is an exception to above law. 

(8) Thermometric conductivity or diffusivity 

It is a measure of rate of change of temperature (with time) when the body is not in steady state (i.e., in variable state) 

The thermometric conductivity or diffusivity is defined as the ratio of the coefficient of thermal conductivity to 
the thermal capacity per unit volume of the material. 

Thermal capacity per unit volume = 
V

mc
= cρ     (As ρ  is density of substance) 

∴     Diffusivity (D) = 
c

K
ρ

   

Unit : m2/sec  and Dimension : ][ 12 −TL   

(9) Thermal resistance  

The thermal resistance of a body is a measure of its opposition to the flow of heat through it.  

It is defined as the ratio of temperature difference to the heat current (= Rate of flow of heat) 
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Now,   temperature difference = )( 21 θθ −  and heat current, H = 
t
Q

 

∴ Thermal resistance, 
lKAtQH

R
/)(/ 21

212121

θθ
θθθθθθ
−
−

=
−

=
−

=
KA
l

=  

Unit :  calsecCo /×  or kcalsecK /×  and  Dimension : ][ 321 θTLM −−  

Electrical Analogy For Thermal Conduction. 

It is an important fact to appreciate that there exists an exact similarity between thermal and electrical 

conductivities of a conductor. 

Electrical conduction Thermal conduction 

Electric charge flows from higher potential to lower potential  Heat flows from higher temperature to lower temperature  

The rate of flow of charge is called the electric current,  

i.e.   
dt
dq

I =  

The rate of flow of heat may be called as heat current  

i.e.   
dt
dQ

H =  

The relation between the electric current and the potential 

difference is given by Ohm's law, that is 
R

VV
I 21 −=   

where R is the electrical resistance of the conductor  

Similarly, the heat current may be related with the 

temperature difference as 
R

H 21 θθ −
=   

where R is the thermal resistance of the conductor  

The electrical resistance is defined as 
A
l

A
l

R
σ

ρ
==   

where ρ = Resistivity and σ  = Electrical conductivity  

)( 21
21 VV

l

A

R

VV
I

dt
dq

−=
−

==
σ

 

The thermal resistance may be defined as 
KA
l

R =   

where K = Thermal conductivity of conductor 

)( 21
21 θθθθ

−=
−

==
l

KA
R

H
dt
dQ

 

 

Problem

50
2512512 −

=
∆
−

=
∆
∆

=
xx
θθθ

 1.  The heat is flowing through a rod of length 50 cm and area of cross-section 5cm2. Its ends are respectively 

at 25oC and 125oC. The coefficient of thermal conductivity of the material of the rod is 0.092 kcal/m×s×oC. 
The temperature gradient in the rod is      [MP PET 2002] 

(a) 2 oC / cm (b) 2 oC / m (c) 20 oC / cm (d) 10 oC /m  

Solution : (a) Temperature gradient cmCo /2= . 

Problem

2211 AKAK =

 2.  Consider two rods of same length and different specific heats (s1 and s2), conductivities K1 and K2 and areas of 

cross-section (A1 and A2) and both giving temperature T1 and T2 at their ends. If the rate of heat loss due to 
conduction is equal, then        [CBSE 2002] 

(a)  (b) 2112 AKAK =  (c) 
2

22

1

11

s
AK

s
AK

=  (d) 
1

21

2

12

s
AK

s
AK

=  

Solution : (a) According to problem, rate of heat loss in both rods are equal i.e. 
21







=








dt
dQ

dt
dQ

 

⇒  
2

222

1

111

l

AK

l

AK θθ ∆
=

∆
       ∴  2211 AKAK =         [As 21 θθ ∆=∆ = (T1 – T2)  and 21 ll =  given] 
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Problem

π

 3. Two rods (one semi-circular and other straight) of same material and of same cross-sectional area are joined 

as shown in the figure. The points A and B are maintained at different temperature. The ratio of the heat 

transferred through a cross-section of a semi-circular rod to the heat transferred through a cross-section of the 
straight rod in a given time is        [UPSEAT 2002] 

(a) 2 :  

(b) 1 : 2 

(c) π : 2 

(d) 3 : 2 

Solution : (a) 
l

KA
dt
dQ θ∆

= , For both rods K, A and ∆θ are same   ∴       
ldt

dQ 1
∝  

So  
ππ
22

)/(

)/(
===

r
r

l

l

dtdQ

dtdQ

arsemicircul

straight

straight

circularsemi
. 

Problem 4.  For cooking the food, which of the following type of utensil is most suitable    

[MNR 1986; MP PET 1990; CPMT 1991; SCRA 1998;MP PMT/PET 1998, 2000; RPET 2001] 

(a) High specific heat and low conductivity (b) High specific heat and high conductivity  

(c) Low specific heat and low conductivity (d) Low specific heat and high conductivity 

Solution : (d) Cooking utensil should conduct maximum and absorb minimum heat so it should possess high conductivity 
and low specific heat. 

Problem

l

KA

dt
dQ θ∆

=

 5.  A heat flux of 4000 J/s is to be passed through a copper rod of length 10 cm and area of cross-section 

100 cm2. The thermal conductivity of copper is 400 W/moC. The two ends of this rod must be kept at a 
temperature difference of        [MP PMT 1999] 

(a) 1 oC (b) 10 oC (c) 100 oC (d) 1000 oC 

Solution : (c) From   ⇒   
dt
dQ

AK
l

×
×

=∆θ   4000
)10100(400

1.0
4

×
××

=
−

= 100oC  

Problem








∆
∆

=
x

K
A

dtdQ θ/

 6.  The coefficients of thermal conductivity of copper, mercury and glass are respectively Kc, Km and Kg such that 

Kc > Km > Kg. If the same quantity of heat is to flow per second per unit area of each and corresponding 
temperature gradients are respectively Xc, Xm and Xg then    [MP PMT 1990] 

(a) Xc= Xm = Xg (b) Xc> Xm > Xg (c) Xc<Xm< Xg (d)  Xm < Xc <Xg  

Solution : (c)   ⇒  Rate of flow of heat per unit area = Thermal conductivity × Temperature gradient  

Temperature gradient  (X) 
(K)tyconductiviThermal 

1
∝         [As =

A
dtdQ /

constant] 

As KC > Km > Kg  therefore gmC XXX << . 

Problem 7.  A room is maintained at 20oC by a heater of resistance 20 ohm connected to 200 volt mains. The temperature 

is uniform through out the room and heat is transmitted through a glass window of area 1 m2 and thickness 

Straight rod B A 
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0.2 cm. What will be the temperature outside? Given that thermal conductivity K for glass is 0.2 cal/m × oC × sec 
and J = 4.2 J/cal       [IIT-JEE 1978] 

(a) 15.24 oC (b) 15.00 oC (c) 24.15 oC (d) None of the above 

Solution : (a) As the temperature of room remain constant therefore the rate of heat generation from the heater should be 

equal to the rate of flow of heat through a glass window  t
l

KAt
R

V
J

.
1 2 θ∆

=









   

 ⇒  
2

2

102.0

)20(12.0
20

)200(
2.4

1
−×

−××
=×

θ
 ⇒ θ = 15.24oC                     [where θ = temperature of outside] 

Problem

P
KTR 22π

 8.  A point source of heat of power P is placed at the centre of a spherical shell of mean radius R. The material of 

the shell has thermal conductivity K. If the temperature difference between the outer and the inner surface of 
the shell is not to exceed T, then the thickness of the shell should not be less than 

(a)  (b) 
P

KTR 24π
 (c) 

P
KTR 2π

 (d) 
P
KTR

4

2π
 

Solution : (b) Rate of flow of heat or power (P) 
x

KA
∆
∆

=
θ

x
TRK

∆
=

24π
 

∴  Thickness of shell 
P

KTR
x

24π
=∆ . 

Problem

l
tAK

l
tAK shirtshirtvestvest θθ ∆
=

∆.

 9.  There are three thermometers – one in contact with the skin of the man, other in between the vest and the 

shirt and third in between the shirt and coat. The readings of the thermometers are 30oC, 25oC and 22oC 
respectively. If the vest and shirt are of the same thickness, the ratio of their thermal conductivities is 

(a) 9 : 25 (b) 25 : 9 (c) 5 : 3 (d) 3 : 5 

Solution : (d)  Rate of flow of heat will be equal in both vest and shirt  

∴    ⇒  
vest

shirt

shirt

vest

K
K

θ
θ
∆
∆

=    ⇒ 
5
3

2530
2225

=
−
−

=
shirt

vest

K
K

. 

Combination of Conductors. 

(1) Series combination :  

Let n slabs each of cross-sectional area A, lengths nllll ,......,, 321  and conductivities nKKKK ......,, 321  

respectively be connected in the series 

Heat current is the same in all the conductors. 

i.e.,  nHHHH
t
Q

==== .........321  

 
n

nnn

l

AK

l

AK

l

AK

l

AK )(
........

)()()( 1

3

433

2

322

1

211 θθθθθθθθ −
==

−
=

−
=

− −  

(i) Equivalent resistance nRRRRR .....321 +++=  

θ1 θ2 θ3 θ4 θn – 1 θn 

ln l3 l2 l1 

K1 K2 K3 
Kn 
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(ii) If sK  is equivalent conductivity, then from relation 
KA
l

R =  

  
AK

l

AK

l

AK

l

AK

l

K

llll

n

n

s

n ++++=
+++

....
.....

3

3

2

2

1

1321   

∴     

n

n

n
s

K

l

K

l

K

l

K

l
llll

K
........

......

3

3

2

2

1

1

321

+++

+++
=  

(iii) Equivalent thermal conductivity for n slabs of equal length 

nKKKK

n
K

1
.....

111

321

+++
=  

      For two slabs of equal length, 
21

212

KK

KK
K

+
=  

(iv) Temperature of interface of composite bar : Let the two bars are arranged in series as shown in the figure. 

Then heat current is same in the two conductors. 

i.e.,   
2

22

1

11 )()(
l

AK
l

AK
t
Q θθθθ −

=
−

=  

By solving we get  

2

2

1

1

2
2

2
1

1

1

l

K

l

K
l

K

l

K

+

+
=

θθ
θ  

If )( 21 lll ==  then 
21

2211

KK
KK

+
+

=
θθθ  

(2) Parallel Combination  

Let n slabs each of length l, areas nAAAA ,.....,, 321  and thermal conductivities nKKKK ,.....,, 321  are connected 
in parallel then. 

(i) Equivalent resistance  
nRRRRR

1
.....

1111

321

+++=  

(ii) Temperature gradient across each slab will be same. 

(iii) Heat current in each slab will be different. Net heat current will be the sum of heat currents through 
individual slabs. i.e., nHHHHH ....321 +++=  

l

AAAAK n )().....( 21321 θθ −++++
l

AK
l

AK
l

AK
l

AK nn )(
.......

)()()( 21213321222111 θθθθθθθθ −
+

−
+

−
+

−
=  

∴ 
n

nn

AAAA

AKAKAKAK
K

.....

.....

321

332211

+++
+++

=  

For n slabs of equal area 
n

KKKK
K n.....321 +++
=  

Equivalent thermal conductivity for two slabs of equal area 
2

21 KK
K

+
=  

θ1 θ θ2 

l2 l1 

K1 K2 

θ1 
l θ2 

K1 
K2 

K3 

Kn 

A1 

A2 

A3 

A3 

Transmission of Heat

8

TEACHING CARE 



Problem

Solution : (b) 

 10.  Two rods of same length and material transfer a given amount of heat in 12 seconds, when they are joined 

end to end. But when they are joined lengthwise, then they will transfer same heat in same conditions in  

[BHU 1998; UPSEAT 2002] 

(a) 24 s (b) 3 s (c) 1.5 s (d) 48 s 

t
l

AKQ .
θ∆

=        ∴
A
l

t ∝         [As Q, K and ∆θ are constant] 









×







=×=

1

1

1

1

1

2

2

1

2

1 2

2/ A

A

l

l

A

A

l

l

t

t
 

4
2

1 =
t

t
 ⇒  3

4
12

4
1

2 ===
t

t  

Problem

o90

 11.  Three rods made of the same material and having the same cross section have been joined as shown in the 

figure. Each rod is of the same length. The left and right ends are kept at 0oC and  respectively. The 
temperature of the junction of the three rods will be      [IIT-JEE (Screening) 2001] 

 

(a) 45o C 

(b) 60o C 

(c) 30o C 

(d) 20o C 

Solution : (b) Let the conductivity of each rod is K. By considering the rods B and C are in parallel, effective thermal 
conductivity of B and C will be 2K.  

Now with the help of given formula 

Temperature of interface 
21

2211

KK

KK

+
+

=
θθ

θ  

                                 C
KK

KK o60
3

180
2

9020
==

+
×+×

=θ . 

Problem

(a) 

 12.  Three rods of same dimensions are arranged as shown in figure they have thermal conductivities K1, K2 and 

K3. The points P and Q are maintained at different temperatures for the heat to flow at the same rate along 
PRQ and PQ then which of the following option is correct   [KCET (Engg. & Med.) 2001] 

)(
2
1

213 KKK +=  

(b) 213 KKK +=  

(c) 
21

21
3 KK

KK
K

+
=  

(d) )(2 213 KKK +=  

R 

Q P 

K1 K2 

K3 

K K 

K 

K 

0oC 90oC θ 

K 2K 

0oC 

90oC 

90oC 

A 

B 

C 
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Solution : (c) Rate of flow of heat along PQ   
l

AK

dt
dQ

PQ

θ∆
=






 3      .….(i) 

Rate of flow of heat along PRQ 
l

AK

dt
dQ s

PRQ 2

θ∆
=






  

Effective conductivity for series combination of two rods of same length 
21

212

KK

KK
K s +

=  

So    
l

A
KK

KK

l
A

KK

KK

dt
dQ

PRQ

θθ ∆
+

=
∆

+
=








.
2

.
2

21

21

21

21       .….(ii) 

Equating (i) and (ii)   
21

21
3 KK

KK
K

+
=  

Problem

 

(a) 75oC 

(b) 67oC 

(c) 33oC 

(d) 25oC  

Solution : (a)  K1 = 9K2, l1 = 18 cm, l2 = 6 cm, θ1 = 100oC, θ2 = 0oC  

Temperature of the junction 

 13. The coefficient of thermal conductivity of copper is nine times that of steel. In the composite cylindrical bar 

shown in the figure. What will be the temperature at the junction of copper and steel   [MP PMT 2000] 

2

2

1

1

2
2

2
1

1

1

l

K

l

K
l

K

l

K

+

+
=

θθ
θ  ⇒   C

KK

KK

o75
12/8

050

618

9

0
6

100
18

9

22

22

=
+

=
+

×+
=θ  

Problem

21 KK +

 14.  A cylinder of radius R made of a material of thermal conductivity K1 is surrounded by a cylindrical shell of 

inner radius R and outer radius 2R made of material of thermal conductivity K2. The two ends of the 
combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical 
surface and the system is in steady state. The effective thermal conductivity of the system is 

[IIT-JEE 1988; MP PMT 1994, 97; SCRA 1998] 

(a)  (b) 
21

21

KK
KK
+

 (c) 
4
3 21 KK +  (d) 

4
3 21 KK +  

Solution : (c) We can consider this arrangement as a parallel combination of two materials having different thermal 

conductivities K1 and K2  

For parallel combination 
21

2211

AA

AKAK
K

+
+

=   

A1 = Area of cross-section of internal cylinder = πR2,  

A2 = Area of cross-section of outer cylinder = π (2R)2 – π(R)2 = 3πR2   

∴    
4

3

3

3. 21
22

2
2

2
1 KK

RR

RKRK
K

+
=

+

+
=

ππ
ππ

 

Copper Steel 

0oC 100oC 

6 cm 18 cm 

R 
2R 

K2 

K1 
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Problem

(a) 

 15.  The temperature of the interface of a compound wall as shown in the figure, in terms of their thermal 

resistances R1 and R2 is  

2
21 θθ +

 

(b) 
21

1221

RR

RR

+
+ θθ

 

(c) 
21

2211

RR

RR

+
+ θθ

 

(d) 
21

2112

θθ
θθ

+
+ RR

 

Solution : (b)  Temperature of interface 
21

2211

KK

KK

+
+

=
θθ

θ  

Substituting 
AR

l
K

1
1 =  and  

AR
l

K
2

2 =   we get 
21

1221

RR

RR

+
+

=
θθ

θ . 

Problem

 

(a) 120oC  

(b) 100oC  

(c) 140oC  

(d) 80oC 

 16.  Six identical conducting rods are joined as shown in figure. Points A and D are maintained at temperatures 

200oC and 20oC respectively. The temperature of junction B will be 

Solution : (c) Let the thermal resistance of each rod is R  

Effective thermal resistance between B and D = 2R    

Temperature of interface 
21

1221

RR

RR

+
+

=
θθ

θ  

.140
3

420
2

200220
C

RR
RR o==

+
×+×

=θ  

 

Ingen-Hauz Experiment. 

It is used to compare thermal conductivities of different materials. If 1l  and 2l  are the lengths of wax melted on 

rods, then the ratio of thermal conductivities is 2
2

2
1

2

1

l
l

K
K

=   

i.e., in this experiment, we observe Thermal conductivity ∝ (length)2  

 

 

θ2
 θ1

 
K2 K1 

θ2 > θ1 

A B C D 

R R 

R R 

R R 

A B 

R 

D 

2R 200oC 20oC 
θ 

A B C D 

20oC 200oC 
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Searle's Experiment.  

It is a method of determination of K of a metallic rod. Here we are not much interested in the detailed 
description of the experimental setup. We will only understand its essence, which is the essence of solving many 
numerical problems. 

In this experiment a temperature difference )( 21 θθ −  is maintained across a rod of length l and area of cross 

section A. If the thermal conductivity of the material of the rod is K, then the amount of heat transmitted by the rod 

from the hot end to the cold end in time t is given by, 
l

tKA
Q

)( 21 θθ −
=     ......(i) 

In Searle's experiment, this heat reaching the other end is utilized to raise the temperature of certain amount of 

water flowing through pipes circulating around the other end of the rod. If temperature of the water at the inlet is 3θ  

and at the outlet is 4θ , then the amount of heat absorbed by water is given by, )( 34 θθ −= mcQ   ......(ii) 

Where, m is the mass of the water which has absorbed this heat and temperature is raised and c is the specific 

heat of the water  

Equating (i) and (ii), K can be determined i.e., 
tA
lmc

K
)(
)(

21

34

θθ
θθ

−
−

=  

Note : ≅ In numericals we may have the situation where the amount of heat travelling to the other end may 

be required to do some other work e.g.,  it may be required to melt the given amount of ice. In that 

case equation (i) will have to be equated to mL. 

i.e.   
l

tKA
mL

)( 21 θθ −
=  

Growth of Ice on Lake. 

Water in a lake starts freezing if the atmospheric temperature drops below Co0 . Let y be the thickness of ice 

layer in the lake at any instant t and atmospheric temperature is Coθ− . The temperature of water in contact with 

lower surface of ice will be zero. If A is the area of lake, heat escaping through ice in time dt is  

   
y

dtKA
dQ

)](0[
1

θ−−
=  

Now, suppose the thickness of ice layer increases by dy in time dt, due to escaping of above heat. Then  

   LAdymLdQ )(2 ρ==  

As 21 dQdQ = , hence, rate of growth of ice will be )/()/( LyKdtdy ρθ=  

So, the time taken by ice to grow to a thickness y is 2

0 2
y

K
L

dyy
K

L
t

y

θ
ρ

θ
ρ

== ∫  

 

Ice 

Water 

0°C 

4°C 

y 

dy 

– θ°C Air 
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If the thickness is increased from 1y  to 2y  then time taken )(
2

2
1

2
2

2

1

yy
K
L

ydy
K

L
t

y

y
−== ∫ θ

ρ
θ

ρ
  

(i) Take care and do not apply a negative sign for putting values of temperature in formula and also do not 

convert it to absolute scale. 

(ii) Ice is a poor conductor of heat, therefore the rate of increase of thickness of ice on ponds decreases with time. 

(iii) It follows from the above equation that time taken to double and triple the thickness, will be in the ratio of  

  ,3:2:1:::: 222
321 ttt  i.e., 9:4:1:::: 321 ttt  

(iv) The time intervals to change the thickness from 0 to y, from y to 2y and so on will be in the ratio 

  )2:3(:)12(:)01(:::: 222222
321 −−∆∆∆ ttt ; 5:3:1:::: 321 ttt ∆∆∆  

Problem

3:10

 17.  If the ratio of coefficient of thermal conductivity of silver and copper is 10 : 9, then the ratio of the lengths upto 

which wax will melt in Ingen Hausz experiment will be    [DPMT 2001] 

(a) 6 : 10 (b)  (c) 100 : 81 (d) 81 : 100 

Solution : (b)  According to Ingen Hausz,    2lK ∝       ∴  
3
10

9
10

2

1

2

1 ===
K

K

l

l
. 

Problem

mL
x

tKA
Q =

∆
∆

=
θ

 18.  An ice box used for keeping eatables cool has a total wall area of 1 metre2 and a wall thickness of 5.0 cm. The 
thermal conductivity of the ice box is K= 0.01 J/moC. It is filled with ice at 0oC along with eatables on a day 
when the temperature is 30oC. The latent heat of fusion of ice is 334×103 J/kg. The amount of ice melted in 
one day is (1 day = 86,400 seconds)      [MP PMT 1995] 

(a) 776 g (b) 7760 g (c) 11520 g (d) 1552 g 

Solution : (d) Quantity of heat transferred through wall will be utilized in melting of ice.  

    ∴ Amount of ice melted 
Lx

tKA
m

∆
∆

=
θ

 

∴ kgm 552.1
10334105

86400)030(101.0
32

=
×××

×−××
=

−
 or 1552g  

Problem

)(
2

2
1

2
2 yy

K
L

t −=
θ

ρ

 19.  Ice starts forming in lake with water at 0oC and when the atmospheric temperature is – 10oC. If the time taken 
for 1 cm of ice be 7 hr, then the time taken for the thickness of ice to change from 1 cm to 2 cm is   

[NCERT 1971; MP PMT / PET 1988] 

(a) 7 hrs (b) 14 hrs (c) Less than 7 hrs (d) More than 7 hrs 

Solution : (d) Time required in increment of thickness from y1 to y2   

In first condition        y1 = 0, y2 = 1 cm         then           ∆t1  ∝ (12 – 02) 

In second condition   y1 = 1 cm, y2 = 2 cm    then          ∆t2  ∝ (22 – 12) 

∴    
3
1

2

1 =
∆
∆

t

t
     ⇒  ∆ t2 = 3 × ∆t1 = 3 × 7 = 21 hrs.  

Problem 20.  The only possibility of heat flow in a thermos flask is through its cork which is 75 cm2 in area and 5 cm thick. Its 

thermal conductivity is 0.0075 cal/cm secoC. The outside temperature is 40oC and latent heat of ice is 80 cal g–1. 

Time taken by 500 g of ice at 0oC in the flask to melt into water at 0oC is   [CPMT 1974, 78; MNR 1983] 
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(a) 2.47 hr 

(b) 4.27 hr 

(c) 7.42 hr 

(d) 4.72 hr. 

 

Solution : (a) 
x

tKA
mL

∆
∆

=
θ

    ⇒  
5

)040(750075.0
80500

t−××
=×    ⇒ t = 8.9 × 103 sec = 2.47 hr.  

Problem

( ) .min77.482926])10()1.10[(
5005.02

8091.0
2

222
1

2
2 ==−

××
×

=−= secyy
k
l

t
θ

ρ

 21. There is ice formation in a tank of water of thickness 10 cm. How much time it will take to have a layer of 0.1 

cm below it ? The outer temperature is – 5oC, the thermal conductivity of ice K = 0.005 cal/cm-secoC, the 
latent heat of ice is 80 cal/gm and the density of ice is 0.91 gm/cc 

(a) 46.39 minutes (b) 47.63 minutes (c) 48.77 minutes (d) 49.31 minutes  

Solution : (c)   

Convection. 

Mode of transfer of heat by means of migration of material particles of 

medium is called convection. It is of two types. 

(1) Natural convection : This arise due to difference of densities at 

two places and is a consequence of gravity because on account of gravity the 
hot light particles rise up and cold heavy particles try setting down. It mostly 
occurs on heating a liquid/fluid.  

(2) Forced convection : If a fluid is forced to move to take up heat from a hot body then the convection 
process is called forced convection. In this case Newton's law of cooling holds good. According to which rate of loss 
of heat from a hot body due to moving fluid is directly proportional to the surface area of body and excess 
temperature of body over its surroundings  

i.e.   )( 0TTA
t
Q

−∝   

   )( 0TTAh
t
Q

−=  

where h = Constant of proportionality called convection coefficient,  

          T = Temperature of body and T0 = Temperature of surrounding  

Convection coefficient (h) depends on properties of fluid such as density, viscosity, specific heat and thermal 
conductivity.  

(i) Natural convection takes place from bottom to top while forced convection in any direction. 

(ii) In case of natural convection, convection currents move warm air upwards and cool air downwards. That is 
why heating is done from base, while cooling from the top. 
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(iii) Natural convection plays an important role in ventilation, in changing climate and weather and in forming 
land and sea breezes and trade winds. 

(iv) Natural convection is not possible in a gravity free region such as a free falling lift or an orbiting satellite. 

(v) The force of blood in our body by heart helps in keeping the temperature of body constant. 

(vi) If liquids and gases are heated from the top (so that convection is not possible) they transfer heat (from top 
to bottom) by conduction. 

(vii) Mercury though a liquid is heated by conduction and not by convection. 

Radiation. 

The process of the transfer of heat from one place to another place without heating the intervening medium is 

called radiation. 

Precisely it is electromagnetic energy transfer in the form of electromagnetic wave through any medium. It is 

possible even in vacuum. 

For example, the heat from the sun reaches the earth through radiation. 

Properties of thermal radiation 

(1) The wavelength of thermal radiations ranges from m7108.7 −×  to m4104 −× . They belong to infra-red 

region of the electromagnetic spectrum. That is why thermal radiations are also called infra-red radiations. 
 

Radiation Frequency Wavelength 

Cosmic rays          > 1021 Hz                  < 10–13 m  

Gamma rays   1018 - 1021 Hz         10–13 - 10–10 m  

X-rays   1016 - 1019 Hz          10–11 - 10–8 m          (0.1 Å - 100 Å) 

Ultraviolet rays    7.5 × 1014 - 2 × 106 Hz  1.4 × 10–8 - 4 × 10–7 m          (140 Å - 4000 Å) 

Visible rays        4 × 1014 - 7.5 × 1014 Hz     4 × 10–7 - 7.8 × 10–7 m     (4000 Å - 7800 Å) 

Infrared rays (Heat)       3 × 1011 - 4 × 1014 Hz  7.8 × 10–7 - 10–3               (7800 Å - 3 × 105 Å) 

Microwaves         3 × 108 - 3 × 1011 Hz       10–3 m - 0.1 m  

Radio waves               104 - 3 × 109 Hz        0.1 m - 104 m  

 

(2) Medium is not required for the propagation of these radiations. 

(3) They produce sensation of warmth in us but we can’t see them. 

(4) Every body whose temperature is above zero Kelvin emits thermal radiation. 

(5) Their speed is equal to that of light i.e. )/103( 8 sm×= . 

(6) Their intensity is inversely proportional to the square of distance of point of observation from the source (i.e. 2/1 dI ∝ ). 
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(7) Just as light waves, they follow laws of reflection, refraction, interference, diffraction and polarisation. 

(8) When these radiations fall on a surface then exert pressure on that surface which is known as radiation pressure. 

(9) While travelling these radiations travel just like photons of other electromagnetic waves. They manifest 
themselves as heat only when they are absorbed by a substance.  

(10) Spectrum of these radiations can not be obtained with the help of glass prism because it absorbs heat 

radiations. It is obtained by quartz or rock salt prism because these materials do not have free electrons and 
interatomic vibrational frequency is greater than the radiation frequency, hence they do not absorb heat radiations. 

Some Definition About Radiations . 

(1) Diathermanous Medium : A medium which allows heat radiations to pass through it without absorbing 
them is called diathermanous medium. Thus the temperature of a diathermanous medium does not increase 

irrespective of the amount of the thermal radiations passing through it e.g., dry air, 2SO , rock salt (NaCl). 

(i) Dry air does not get heated in summers by absorbing heat radiations from sun. It gets heated through 
convection by receiving heat from the surface of earth. 

(ii) In winters heat from sun is directly absorbed by human flesh while the surrounding air being 
diathermanous is still cool. This is the reason that sun’s warmth in winter season appears very satisfying to us. 

(2) Athermanous medium : A medium which partly absorbs heat rays is called a thermous medium  As a 
result temperature of an athermanous medium increases when heat radiations pass through it e.g., wood, metal, 
moist air, simple glass, human flesh etc. 

Glass and water vapours transmit shorter wavelengths through them but reflects longer wavelengths. This 

concept is utilised in Green house effect. Glass transmits those waves which are emitted by a source at a 
temperature greater than 100°C. So, heat rays emitted from sun are able to enter through glass enclosure but heat 
emitted by small plants growing in the nursery gets trapped inside the enclosure. 

(3) Reflectance, Absorptance and transmittance  

When thermal radiations (Q) fall on a body, they are partly reflected, partly absorbed and partly transmitted. 

(i) Reflectance or reflecting power (r) : It is defined as the ratio of the amount of thermal radiations reflected (Qr) 
by the body in a given time to the total amount of thermal radiations incident on the body in that time. 

(ii) Absorptance or absorbing power (a) : It is defined as the ratio of the amount of thermal radiations absorbed 
(Qa) by the body in a given time to the total amount of thermal radiatons incident on the body in that time. 

(iii) Transmittance or transmitting power  (t) : It is defined as the ratio of the amount of thermal radiations 
transmitted (Qt) by the body in a given time to the total amount of thermal radiations incident on the body in that time.  

From the above definitions   
Q

Q
r r= ,  

Q

Q
a a=     and  

Q

Q
t t=  

By adding we get      1
)(
=

++
=++=++

Q

QQQ

Q

Q

Q

Q

Q

Q
tar tartar  
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∴         1=++ tar  

(a) r, a and t all are the pure ratios so they have no unit and dimension. 

(b) For perfect reflector      : r = 1, a  = 0 and t = 0  

(c) For perfect absorber    : a = 1, r = 0  and t = 0       (Perfectly black body) 

(d) For perfect transmitter : t = 1, a = 0  and r = 0 

(e) If body does not transmit any heat radiation, t = 0     ∴ raar −==+ 1or1   

So if r is more, a is less and vice-versa. It means good reflectors are bad absorbers. 

(4) Monochromatic Emittance or Spectral emissive power  

For a given surface it is defined as the radiant energy emitted per sec per unit area of the surface with in a unit 

wavelength around λ i.e. lying between 





 −

2
1λ  to 






 +

2
1λ . 

Spectral emissive power 
wavelengthtimeArea

Energy
)(

××
=λE    

Unit :  
Åsecm

Joule

××2
    and  Dimension : ][ 31 −− TML  

(5) Total emittance or total emissive power  

It is defined as the total amount of thermal energy emitted per unit time, per unit area of the body for all 

possible wavelengths.    ∫
∞

=
0

λλdEE  

Unit : 
sec2 ×m

Joule
 or 

2m

Watt
   and    Dimension : ][ 3−MT  

(6) Monochromatic absorptance or spectral absorptive power  

It is defined as the ratio of the amount of the energy absorbed in a certain time to the total heat energy 

incident upon it in the same time, both in the unit wavelength interval. It is dimensionless and unit less quantity. It is 

represented by aλ. 

(7) Total absorptance or total absorpting power : It is defined as the total amount of thermal energy 
absorbed per unit time, per unit area of the body for all possible wavelengths.  

   ∫
∞

=
0

λλdaa  

It is also unit less and dimensionless quantity. 

(8) Emissivity (e) : Emissivity of a body at a given temperature is defined as the ratio of the total emissive 
power of the body (Epractical ) to the total emissive power of a perfect black body (Eblack) at that temperature. 
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O 
P 

i.e.   
black

practical

E

E
e =  

e = 1 for perfectly black body but for practical bodies emissivity (e) lies between zero and one (0 < e < 1). 

(9) Perfectly black body : A perfectly black body is that which absorbs completely the radiations of all 

wavelengths incident on it. As a perfectly black body neither reflects nor transmits any radiation, therefore the 

absorptance of a perfectly black body is unity i.e. t = 0 and r = 0     ∴ a = 1. 

We know that the colour of an opaque body is the colour (wavelength) of radiation reflected by it. As a black 
body reflects no wavelength so, it appears black, whatever be the colour of radiations incident on it. 

When perfectly black body is heated to a suitable high temperature, it emits radiation of all possible 

wavelengths. For example, temperature of the sun is very high (6000 K approx.) it emits all possible radiation so it 
is an example of black body. 

(10) Ferry’s black body : A perfectly black body can’t be realised in practice. The 

nearest example of an ideal black body is the Ferry’s black body. It is a doubled walled 
evacuated spherical cavity whose inner wall is blackened. There is a fine hole in it. All 
the radiations incident upon this hole are absorbed by this black body. If this black body 
is heated to high temperature then it emits radiations of all wavelengths. 

Problem 22. An ideal black body at room temperature is thrown into a furnace. It is observed that  [IIT-JEE (Screening) 2002] 

(a) Initially it is the darkest body and at later times the brightest 

(b) It is the darkest body at all times 

(c) It cannot be distinguished at all times 

(d) Initially it is the darkest body and at later times is cannot be distinguished 

Solution : (d)   

Problem 23.  A body is in thermal equilibrium with the surrounding     [RPMT 1987] 

(a) It will stop emitting heat radiation 

(b) Amount of radiations emitted and absorbed by it will be equal 

(c) It will emit heat radiations at faster rate 

(d) It will emit heat radiations slowly 

Solution : (b)   

Problem

3
1

 24.  If transmission power of a surface is 1/6  and reflective power is 1/3, then its absorptive power will be  

(a)  (b) 
2
1  (c) 

6
1  (d) 

12
1  

Solution : (b) 
6
1

=t ,    
3
1

=r    and  we know  1=++ tra   

∴  a = 1 – r – t 
2
1

6
1

3
1

1 =−−= . 
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Prevots Theory of Heat Exchange. 

(1) Every body emits heat radiations at all finite temperature (Except 0 K) as well as it absorbs radiations from 
the surroundings. 

(2) Exchange of energy along various bodies takes place via radiation. 

(3) The process of heat exchange among various bodies is a continuous phenomenon. 

(4) If the amount of radiation absorbed by a body is greater than that emitted by it then the temperature of 
body increases and it appears hotter. 

(5) If the amount of radiation absorbed by a body is less than that emitted by it, then the temperature of the 
body decreases and consequently the body appears colder. 

(6) If the amount of radiation absorbed by a body is equal to that emitted by the body, then the body will be 
in thermal equilibrium and the temperature of the body remains constant. 

(7) At absolute zero temperature (0 K or – 273°C) this law is not applicable because at this temperature the 
heat exchange among various bodies ceases. 

Kirchoff's Law. 

The ratio of emissive power to absorptive power is same for all surfaces at the same temperature and is equal 

to the emissive power of a perfectly black body at that temperature. 

Thus if apractical and Epractical represent the absorptive and emissive power of a given surface, while ablack and Eblack 

for a perfectly black body, then according to law    
black

black

practical

practical

a

E

a

E
=  

But for a perfectly black body ablack = 1  so   black
practical

practical E
a

E
=  

If emissive and absorptive powers are considered for a particular wavelength λ, black

practical

)( λ
λ

λ E
a

E
=








 

Now since (Eλ)black is constant at a given temperature, according to this law if a surface is a good absorber of a 

particular wavelength it is also a good emitter of that wavelength. 

This in turn implies that a good absorber is a good emitter (or radiator)  

Applications of Kirchoff's law 

(1) Sand is rough black, so it is a good absorber and hence in deserts, days (when radiation from the sun is 

incident on sand) will be very hot. Now in accordance with Kirchoff’s law, good absorber is a good emitter so nights 
(when sand emits radiation) will be cold. This is why days are hot and nights are cold in desert. 

(2) Sodium vapours, on heating, emit two bright yellow lines. These are called D1, D2 lines of sodium. When 

continuos white light from an arc lamp is made to pass through sodium vapours at low temperature, the continuous 
spectrum is intercepted by two dark lines exactly in the same places as D1 and D2 lines. Hence sodium vapours 
when cold, absorbs the same wavelength, as they emit while hot. This is in accordance with Kirchoff's law. 
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(3) When a shining metal ball having some black spots on its surface is heated to a high temperature and is 
seen in dark, the black spots shine brightly and the shining ball becomes dull or invisible. The reason is that the 
black spots on heating absorb radiation and so emit these in dark while the polished shining part reflects radiations 

and absorb nothing and so does not emit radiations and becomes invisible in the dark.  

(4) When a green glass is heated in furnace and taken out, it is found to glow with red light. This is because 

red and green are complimentary colours. At ordinary temperatures, a green glass appears green, because it 
transmits green colour and absorb red colour strongly. According to Kirchoff's law, this green glass, on heating must 
emit the red colour, which is absorbed strongly. Similarly when a red glass is heated to a high temperature it will 
glow with green light.  

(5) Kirchoff' law also explains the existence of Fraunhoffer lines. These are some dark lines observed in the 
otherwise spectrum of the sun. According to Fraunhoffer, the 

central portion of the sun, called photosphere, is at a very high 
temperature and emits continuous light of all wavelengths. Before 
reaching us, the light passes through outer portion of the sun, 
called chromosphere. The chromosphere has some terrestrial 

elements in vapour form at lower temperature than that of 
photosphere. These elements absorb those wavelength which they 
would emit while hot. These absorbed wavelengths, which are 
missing appear as dark lines in the spectrum of the sun. 

But during total solar eclipse these lines appear bright because the gases and vapour present in the 
chromosphere start emitting those radiation which they had absorbed.  

(6) A person with black skin experiences more heat and more cold as compared to a person of white skin 

because when the outside temperature is greater, the person with black skin absorbs more heat and when the 
outside temperature is less the person with black skin radiates more energy.  

 

Problem

(a) 

 25. The graph. Shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y 

having same surface area, with time (t) due to the emission of radiation. Find the correct relation between the 
emissivity (e) and absorptivity (a) of the two bodies    [IIT-JEE (Screening) 2003] 

yxyx aaee <> &  

(b) yxyx aaee >< &  

(c) yxyx aaee >> &  

(d) yxyx aaee << &  

Solution : (c) From the graph it is clear that initially both the bodies are at same temperature but after that at any instant 

temperature of body x is less then the temperature of body y. It means body x emits more heat i.e. emissivity 

of body x is more than body y   ∴ yx ee >  

and according to Kirchoff's law good emitter are also good absorber so .yx aa >  

Photo 
sphere 

Chromosphere 

Radiations of 
wavelengths 

ranging 0 to ∞ 

Radiations having all 
wavelengths except 

wavelengths absorbed by 
various elements in 

chromosphere 

t 

T 

y 

x 
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Problem 321 ,, λλλ 26.  Certain substance emits only the wavelengths  and 4λ when it is at a high temperature. When this 

substance is at a colder temperature, it will absorb only the following wavelengths  [MP PET 1990] 

(a) 1λ  (b) 2λ  (c) 1λ and 2λ  (d) 321 ,, λλλ  and 4λ  

Solution : (d) If a body emits wavelength λ1, λ2, λ3 and λ4 at a high temperature then at a lower temperature it will absorbs 
the radiation of same wavelength. This is in accordance with Kirchoff's law.  

 

Problem

 

(a) The level of alcohol in limb X falls while that in limb Y rises  

(b) The level of alcohol in limb X rises while that in limb Y falls 

(c) The level of alcohol falls in both limbs  

(d) There is no change in the levels of alcohol in the two limbs 

Solution : (a)  Black bulb absorbs more heat in comparison with painted bulb. So air in black bulb expands more. Hence the 
level of alcohol in limb X falls while that in limb Y rises. 

Distribution of Energy in The Spectrum of Black Body. 

 27.  The following figure shows two air-filled bulbs connected by a U-tube partly filled with alcohol. What happens 
to the levels of alcohol in the limbs X and Y when an electric bulb placed midway between the bulbs is lighted 

Langley and later on Lummer and Pringsheim investigated the distribution 
of energy amongst the different wavelengths in the thermal spectrum of a black 
body radiation. The results obtained are shown in figure. From these curves it is 

clear that 

(1) At a given temperature energy is not uniformly distributed among 

different wavelengths. 

(2) At a given temperature intensity of heat radiation increases with 

wavelength, reaches a maximum at a particular wavelength and with further 
increase in wavelength it decreases. 

(3) With increase in temperature wavelength mλ  corresponding to most 

intense radiation decreases in such a way that constant.=×Tmλ  [Wien’s law] 

(4) For all wavelengths an increase in temperature causes an increase in intensity. 

(5) The area under the curve ∫= λλdE  will represent the total intensity of radiation at a particular 

temperature. This area increases with rise in temperature of the body. It is found to be directly proportional to the 
fourth power of absolute temperature of the body, i.e., 

∫ ∝= 4TdEE λλ  [Stefan’s law] 

(6) The energy (Emax) emitted corresponding to the wavelength of maximum emission (λm) increases with fifth 

power of the absolute temperature of the black body i.e.,  5
max TE ∝  

T3 

T2 

T1 

T3> T2> T1 

Eλ 

λ λ m
 3  

λ m
 2  

λ m
 1  

Bulb 

Black Painted 

Alcohol 

X Y 
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Problem

 

(a) T1 >T2 > T3  

(b) T1 >T3 > T2  

(c) T2 >T3 > T1  

(d) T3 >T2 > T1  

Solution : (b) According to Wien's law 

 28. The plots of intensity versus wavelength for three black bodies at temperatures T1, T2 and T3 respectively are 

as shown. Their temperature are such that     [IIT-JEE (Screening) 2000] 

Tm
1

∝λ  and from the figure 231 )()()( mmm λλλ <<  therefore T1 > T3 > T2. 

Problem λE 29.  The adjoining diagram shows the spectral energy density distribution of a black body at two different 

temperatures. If the areas under the curves are in the ratio 16 : 1, the value of temperature T is  [DCE 1999] 

 

(a) 32,000 K 

(b) 16,000 K 

(c) 8,000 K 

(d) 4,000 K  

Solution : (d) Area under curve represents the emissive power of the body 
1

16

20002000

==
A

A

E

E TT  (given)  ….(i) 

But from Stefan's law E ∝ T4   ∴  
4

2000 2000






=

T
E

ET      ….(ii) 

From (i) and (ii) 
1

16
2000

4

=





 T

  ⇒ 2
2000

=
T

  ⇒ T = 4000K. 

 

 

Problem

 

  

(a)    (b)   

 

 

 30. Following graph shows the correct variation in intensity of heat radiations by black body and frequency at a 
fixed temperature 

 

(c)    (d)  

 

 

 

T2 

λ 

I 
T1 

T3 

λ 

Eλ 
2000 K 

T K 

Eλ 

ν 

Ultra-violet Visible Infra-red 

3500K 

2500K 

1500K 

Eλ 

ν 

Visible 

1500K 

2500K 

3500K 

Ultra-violet Infra-red 

Visible UV 

3500K 

2500K 

1500K 

Eλ 

ν 

Infra-red 
1500K 

2500K 

3500K 

Eλ 

ν 

Visible UV Infra-red 
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Solution : (c) As the temperature of body increases, frequency corresponding to maximum energy in radiation (vm) increases 
this is shown in graph (c). 

 

Wien's Displacement Law. 

When a body is heated it emits radiations of all wavelength. However the intensity of radiations of different 

wavelength is different. 

According to Wien's law the product of wavelength corresponding to maximum intensity of radiation and 

temperature of body (in Kelvin) is constant, i.e. constant== bTmλ  

Where b is Wien's constant and has value Km -1089.2 3−× . 

 

This law is of great importance in ‘Astrophysics’ as through the analysis of radiations coming from a distant 

star, by finding mλ  the temperature of the star )/( mbT λ=  is determined. 

Problem mµ 31.  A black body at 200 K is found to emit maximum energy at a wavelength of 14 . When its temperature is 

raised to 1000 K, the wavelength at which maximum energy is emitted is   [MP PET 1991; BVP 2003] 

(a) 14 mµ  (b) 70 Fµ  (c) 2.8 mµ  (d) 2.8 mm 

Solution : (c) =Tmλ constant        ⇒  
5
1

1000
200

)(

)(

2

1

1

2 ===
T

T

m

m

λ
λ

  ⇒ 
5

14

5

)(
)( 1

2
mm

m
µλ

λ == = 2.8 µm. 

Problem 0λ 32.  The energy spectrum of a black body exhibits a maximum around a wavelength . The temperature of the 

black body is now changed such that the energy is maximum around a wavelength 
4

3 0λ . The power radiated 

by the black body will now increase by a factor of     [KCET (Med.) 2002] 

(a) 256/81 (b) 64/27 (c) 16/9 (d) 4/3 

Solution : (a) According to Wien's law wavelength corresponding to maximum energy decreases. When the temperature of 

black body increases i.e. =Tmλ  constant   ⇒   
3
4

4/3 0

0

2

1

1

2 ===
λ
λ

λ
λ

T

T
 

Now according to Stefan's law  
81

256
3
4

44

1

2

1

2 =





=








=

T

T

E

E
. 

Problem m101093.2 −× 33.  The wavelength of maximum energy released during an atomic explosion was . Given that 

Wien's constant is m31093.2 −× –K, the maximum temperature attained must be of the order of  

[Haryana CEE 1996; MH CET 2002] 

(a) 10–7 K (b) 107 K (c) 10–13 K (d) K71086.5 ×  

Solution : (b) From Wien's displacement law bTm =λ        ∴    K
b

T
m

7
10

3

10
1093.2

1093.2
=

×

×
==

−

−

λ
. 

Problem 34.  Consider the following statements  

Assertion (A) : Blue star is at higher temperature than red star 

λm 

T 

lo
gλ

m
 

log T 
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Reason (R) : Wien's displacement law states that  

  
m

T
λ
1

∝  

Of these statements        [AIIMS 2002] 

(a) Both A and R are true and the R is a correct explanation of the A 

(b) Both A and R are true but the R is not a correct explanation of the A 

(c) A is true but the R is false 

(d) Both A and R are false 

(e) A is false but the R is true 

Solution : (a) Wavelength of radiation from blue star is less than that of red star. So its temperature will be higher than red star. 

Problem

Knmb 61088.2 ×=

 35.  A black body is at a temperature of 2880 K. The energy of radiation emitted by this object with wavelength 

between 499 nm and 500 nm is U1, between 999 nm and 1000 nm is U2 and between 1499 nm and 1500 nm 

is U3. The Wien's constant . Then     [IIT-JEE 1998] 

(a) U1 = 0 (b) U3 = 0 (c) U1 > U2 (d) U2 > U1  

Solution : (d) According to Wien's displacement law bTm =λ  

∴   nm
nm

Knm

T
b

m 1000
2880

-1088.2 6

=
×

==λ   

 

i.e. energy corresponding to wavelength 1000 nm will be maximum i.e. U2 will be maximum U1 < U2 > U3   

Energy distribution graph with wavelength will be as follows   

Problem

         [RPMT 1996] 

(a) A 

(b) B 

(c) C 

(d) D 

Solution : (b) Wien's law 

 36. Which of the following is the vm-T graph for a perfectly black body  

Tm
1

∝λ    or  Tm ∝ν  

νm increases with temperature. So the graph will be straight line. 

 

Law of Distribution of Energy. 

The theoretical explanation of black body radiation was done by Planck.  

If the walls of hollow enclosure are maintained at a constant temperature, then the inside of enclosure are 
filled with the electromagnetic radiation.  

The radiation coming out from a small hole in the enclosure are called black body radiation. According to Max 
Planck, the radiation inside the enclosure may be assumed to be produced by a number of harmonic oscillators.  

λ (nm) 

Eλ 

U1 

U2 

U3 

50
0 

49
9 

10
00

 
90

0 

14
99

 
15

00
 

B 
C 

D νm 

A 

T 
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A harmonic oscillator oscillating with frequency ν can possesses energies, which are integral multiples of hν. 
Where h is a constant, called Planck's constant. Thus the harmonic oscillator can posses energies given by νnhE =  
where n is an integer. 

According to Planck's law     λ
λ
πλ λλ d

e

hc
dE

KThc ]1[

18
/5 −

=  

This law is valid for radiations of all wavelengths ranging from zero to infinite.  

For radiations of short wavelength 





 <<

KT
hcλ  

Planck's law reduces to Wien's energy distribution law λ
λ

λ λ
λ de

A
dE TB /

5
−=  

For radiations of long wavelength 





 >>

KT
hcλ  

Planck's law reduces to Rayleigh-Jeans energy distribution law λ
λ
πλλ d
KT

dE
4

8
=  

Stefan's Law. 

According to it the radiant energy emitted by a perfectly black body per unit area per sec (i.e. emissive power 
of black body) is directly proportional to the fourth power of its absolute temperature, 

i.e.   4TE ∝  or 4TE σ=  

where σ  is a constant called Stefan’s constant having dimension ][ 43 −− θMT  and value 428 /1067.5 KmW−× . 

(i) If e is the emissivity of the body then 4TeE σ=  

(ii) If Q is the total energy radiated by the body then 4Te
tA

Q
E σ=

×
=   ⇒  4TetAQ σ=   

(iii) If a body at temperature T is surrounded by a body at temperature T0, then Stefan's law may be put as  

   )( 4
0

4 TTeE −= σ  

(iv) Cooling by radiation : If a body at temperature T is in an environment of temperature T0(< T), the body is 
loosing as well as receiving so net rate of loss of energy 

   )( 4
0

4 TTeA
dt
dQ

−= σ       …..(i) 

Now if m is the mass of body and c its specific heat, the rate of loss of heat at temperature T must be 

   
dt
dT

mc
dt
dQ

=        …..(ii) 

From equation (i) and (ii)   )( 4
0

4 TTeA
dt
dT

mc −= σ  

∴ Rate of fall of temperature or rate of cooling, )( 4
0

4 TT
mc

eA
dt
dT

−=
σ

  …..(iii) 

i.e. when a body cools by radiation the rate of cooling depends on 
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(a) Nature of radiating surface i.e. greater the emissivity, faster will be the cooling. 

(b) Area of radiating surface, i.e. greater the area of radiating surface, faster will be the cooling. 

(c) Mass of radiating body i.e. greater the mass of radiating body slower will be the cooling. 

(d) Specific heat of radiating body i.e. greater the specific heat of radiating body slower will be cooling. 

(e) Temperature of radiating body i.e. greater the temperature of body faster will be cooling. 

(f) Temperature of surrounding i.e. greater the temperature of surrounding slower will be cooling. 

Problem

1:1
16
1

16
4000
2000

1
4

424

2

1
2
2

2
1

4

2

1

2

1

2

1 =×=





×






=








=








=

T

T

r

r

T

T

A

A

Q

Q

π
π

 37.  Two black metallic spheres of radius 4m, at 2000 K and 1m at 4000 K will have ratio of energy radiation as 

[RPET 2000; AIEEE 2002] 

(a) 1 : 1 (b) 4 : 1 (c) 1 : 4 (d) 2 : 1 

Solution : (a) Q = σ A t T4    ⇒  . 

Problem

44

44

300673

300473

−
−

 38.  Two identical metal balls at temperature 200oC and 400oC kept in air at 27oC. The ratio of net heat loss by 

these bodies is        [CPMT 2002] 

(a) 1/ 4 (b) 1/ 2 (c) 1/ 16 (d)  

Solution : (d) Emissive power of a body (T) in a surrounding (T0),  )( 4
0

4 TTE −= σ  or  )( 4
0

4
1 TTQ −∝  

⇒    
44

44

4
0

4
2

4
0

4
1

2

1

)300()673(

)300()473(

)(

)(

−

−
=

−

−
=

TT

TT

Q

Q
. 

Problem

4TA
t
Q

P σ==

 39.  Two spheres made of same material have radii in the ratio 1 : 2. Both are at same temperature. Ratio of heat 

radiation energy emitted per second by them is      [MP PMT 2002] 

(a) 1 : 2 (b) 1 : 8 (c) 1 : 4 (d) 1 : 16 

Solution : (c)    ∴  
4
1

2
1

2

2
2

2
1

2

1

2

1 =





===

r

r

A

A

P

P
     [If T = constant] 

Problem 1r 40.  Two spherical black bodies of radii  and 2r  and with surface temperature 1T  and 2T  respectively radiate the 

same power. Then the ratio of 1r  and 2r will be    [KCET (Engg. & Med.) 2001; UPSEAT 2001] 

(a) 
2

1

2








T
T  (b) 

4

1

2








T
T  (c) 

2

2

1








T
T  (d) 

4

2

1








T
T  

Solution : (a) P = A σ T4 = 4πr2σ T4   ⇒ 42TrP ∝   or    
4

2 1

T
r ∝   [As P = constant]   ∴  

2

1

2

2

1








=

T

T

r

r
 

Problem

E
8
3

 41.  The rectangular surface of area 8 cm × 4 cm of a black body at a temperature of 127oC emits energy at the 

rate of E per second. If the length and breadth of the surface are each reduced to half of the initial value and 

the temperature is raised to 327oC, the rate of emission of energy will become    [MP PET 2000] 

(a)  (b) E
16
81  (c) E

16
9  (d) E

64
81  
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Solution : (d) Energy radiated by body per second 4TA
t
Q σ=   or   4Tbl

t
Q

××∝  [Area = l × b] 

∴  
4

1

2

1

2

1

2

1

2








××=

T

T

b

b

l

l

E

E 4

1

1

1

1

400
600)2/()2/(







××=

b

b

l

l 4

2
3

2
1

2
1







××=  ⇒ EE

64
81

2 =  

Problem

( )4
0

4 TT
mc

eA
dt
dT

−=
σ

 42.  A solid copper cube of edges 1 cm is suspended in an evacuated enclosure. Its temperature is found to fall 

from 100oC to 99oC in 100s. Another solid copper cube of edges 2 cm, with similar surface nature, is 
suspended in a similar manner. The time required for this cube to cool from 100oC to 99oC will be 
approximately       [MP PMT 1997] 

(a) 25 s (b) 50 s (c) 200 s (d) 400 s 

Solution : (c) )(
)(

)6( 4
0

4
3

2

TT
ca

ae
−

×
=

ρ
σ

 ⇒ For the same fall in temperature, time adt ∝  

cm
cm

a

a

dt

dt

1
2

1

2

1

2 ==   ⇒  dt2 = 2 × dt1  = 2 × 100 sec = 200 sec          [As A = 6a2 and m = V × ρ = a3 × ρ] 

Problem

3/1

 43.  Two metallic spheres S1 and S2 are made of the same material and have identical surface finish. The mass of 
S1 is three times that of S2. Both the spheres are heated to the same high temperature and placed in the same 
room having lower temperature but are thermally insulated from each other. The ratio of the initial rate of 
cooling of S1 to that of S2 is        [IIT-JEE 1995] 

(a) 1/ 3 (b) (1/ 3)1/ 3 (c)  (d) 1/3  

Solution : (b) )( 4
0

4 TT
mc

Ae

dt
dT

−=
σ

   ∴   Rate of cooling 
rr

r
R

1

3
4

4

3

2

∝
×

∝
ρπ

π
 ⇒ 

1

2

2

1

r

r

R

R
=  

But according to problem m1 = 3m2  ⇒ 





 ×=× ρπρπ 3

2
3

1 3
4

3
3
4

rr  ⇒ 3
2

3
1 3rr =  ⇒ 

3/1

1

2

3
1






=








r

r
 

∴  Ratio of rate of cooling 
3/1

2

1

3
1






=

R

R
. 

Problem

)( 4
0

4 TT
mc

eA
dt
dT

−=
σ

 44. A sphere, a cube and a thin circular plate, all made of same substance and all have same mass. These are 
heated to 200oC and then placed in a room, then the     [MP PMT 1993] 

(a) Temperature of sphere drops to room temperature at last 

(b) Temperature of cube drops to room temperature at last 

(c) Temperature of thin circular plate drops to room temperature at last 

(d) Temperature of all the three drops to room temperature at the same time 

Solution : (a) )( 4
0

4 TT
cV

eA
−=

ρ
σ

 ∴ Rate of cooling AR ∝  

[As masses are equal then volume of each body must be equal because materiel is same] 

i.e. rate of cooling depends on the area of cross-section and we know that for a given volume the area of 

cross-section will be minimum for sphere. It means the rate of cooling will be minimum in case of sphere.  

So the temperature of sphere drops to room temperature at last.  
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Problem ρ 45.  A solid copper sphere (density  and specific heat capacity c ) of radius r at an initial temperature 200K is 

suspended inside a chamber whose walls are at almost 0K. The time required (in µ s) for the temperature of 

the sphere to drop to 100 K is       [IIT-JEE 1991] 

(a) 
σ
ρcr

7
72  (b) 

σ
ρcr

72
7  (c) 

σ
ρcr

7
27  (d) 

σ
ρcr

27
7  

Solution : (b) )( 4
0

4 TT
mcJ

A

dt
dT

−=
σ

  [In the given problem fall in temperature of body KdT 100)100200( =−=   

                        Temperature of surrounding T0  = 0K, Initial temperature of body T = 200K] 

)0200(

3
4

4100 44

3

2

−=
Jcr

r
dt ρπ

πσ ⇒ s
cr

s
crcr

s
Jcr

dt µ
σ
ρ

µ
σ
ρ

σ
ρ

σ
ρ

72
7

–~
80
7

10
48

2.4
.10

48
66 =×=×= −− [As J = 4.2] 

Problem

1:
3

4π

 46.  A sphere and a cube of same material and same volume are heated upto same temperature and allowed to 

cool in the same surroundings. The ratio of the amounts of radiations emitted will be 

(a) 1 : 1 (b)  (c) 1:
6

3/1







π  (d) 1:

3
4

2
1

3/2







 π  

Solution : (c) Q = σ A t (T4 – T0
4)  

If T, T0, σ and t are same for both bodies then 
2

2

6

4

a

r
A

A

Q

Q

cube

sphere

cube

sphere π
==      …..(i) 

But according to problem, volume of sphere = Volume of cube  ⇒  33

3
4

ar =π  ⇒ ra
3/1

3
4







= π  

Substituting the value of a in equation (i) we get   

  1:
6

3
4

6

4

3
4

6

4

6

4
3/1

2
3/2

2

23/1

2

2

2







=









=





















==
π

π

π

π

ππ

r

r

r

r

a

r
Q

Q

cube

sphere  

Newton's Law of Cooling. 

If in case of cooling by radiation the temperature T of body is not very different from that of surrounding  

i.e.   TTT ∆+= 0  

                 











−







 ∆
+=−∆+=− 11])[(

4

0

4
0

4
0

4
0

4
0

4

T
T

TTTTTT 







−

∆
+= 1

4
1

0

4
0 T

T
T     [Using Binomial theorem] 

       TT ∆= 3
04    …..(i) 

By Stefan’s law, ][ 4
0

4 TT
mc

eA
dt
dT

−=
σ

 

From equation (i), TT
mc

eA
dt
dT

∆= 3
04

σ
 

Time t 

θ 

θ0 

0 

Cooling curve of a 
body 
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So   T
dt
dT

∆∝  or  0θθθ
−∝

dt
d

 

i.e., if the temperature of body is not very different from surrounding, rate of cooling is proportional to 
temperature difference between the body and its surrounding. This law is called Newton’s law of cooling. 

(1) Practical examples  

(i) Hot water loses heat in smaller duration as compared to moderate warm water. 

(ii) Adding milk in hot tea reduces the rate of cooling. 

(2) Greater the temperature difference between body and its surrounding greater will be the rate of cooling. 

(3) If 0θθ = , 0=
dt
dθ

 i.e. a body can never be cooled to a temperature lesser than its surrounding by radiation. 

(4) If a body cools by radiation from Co
1θ  to Co

2θ  in time t, then 
tdt

d 21 θθθ −
=  and 

2
21 θθ

θθ
+

== av  

The Newton’s law of cooling becomes 




 −
+

=




 −
0

2121

2
θ

θθθθ
K

t
 

This form of law helps in solving numericals. 

(5) Cooling curves : 

Curve between temperature of body θ and time. 

 

 

 

 

 

ktAe −=− 0θθ , which indicates temperature decreases 

exponentially with increasing time. 

Curve between rate of cooling (R) and temperature 

difference between body (θ) and surrounding (θ0)  

 

 

 

 

)( 0θθ −∝R . This is a straight line passing through 

origin. 

Curve between the rate of cooling (R) and body 

temperature (θ). 

 

 

 

00 )( θθθθ KKKR −=−=  

This is a straight line intercept R-axis at 0θK−  

Curve between log(θ  – θ0) and time  

 

 

 

 

As Kdt
d

dt
d

−=
−

⇒−−∝
)(

)(
0

0 θθ
θθθθ

 

Integrating CKte +−=− )(log 0θθ  

AKt ee log)(log 0 +−=−θθ  

This is a straight line with negative slope  

 

T
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(6) Determination of specific heat of a liquid : If volume, radiating surface area, nature of surface, initial 
temperature and surrounding of water and given liquid are equal and they are allowed to cool down (by radiation) 
then rate of loss of heat and fall in temperature of both will be same. 

i.e.    
liquidwater







=








dt
dQ

dt
dQ

 

  
2

21
11

1

21 )(
)(

)(
)(

t
Wsm

t
Wms

θθθθ −
+=

−
+   

or              






 +
=







 +

2

11

1 t

Wsm

t
Wms

  [where W = water equivalent of calorimeter] 

If density of water and liquid is ρ and ρ′ respectively then ρVm =  and ρ ′= Vm'  

Problem

321 TTT ==

 47.  A bucket full of hot water cools from 75oC to 70oC in time T1, from 70oC to 65oC in time T2 and from 65oC to 

60oC in time T3, then     [NCERT 1980; MP PET 1989; CBSE 1995; MH CET (Med.) 1999; KCET 2003] 

(a)  (b) 321 TTT >>  (c) 321 TTT <<  (d) 321 TTT <>  

Solution : (c)  According to Newton's law of cooling rate of cooling depends upon the difference of temperature between the 
body and the surrounding. It means that when the difference of temperature between the body and the 
surrounding is small then time required for same fall in temperature is more in comparison with the same fall 

at higher temperature difference between the body and surrounding. So according to problem T1 < T2 < T3. 

Problem
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
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 48.  A cup of tea cools from 80oC to 60oC in one minute. The ambient temperature is 30oC. In cooling from 60oC 

to 50oC it will take       [MP PMT 1995; MH CET 2002] 

(a) 30 Seconds (b) 60 Seconds (c) 90 Seconds (d) 50 Seconds 

Solution : (d) According to Newton's law of cooling   

For first condition 



 −

+
∝

−
30

2
6080

60
6080

   …..(i) 

and for second condition 



 −

+
∝

−
30

2
50605060

t
 ….(ii) 

By solving (i) and (ii) we get t = 48 sec 50–~ sec. 
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 49.  A body takes T minutes to cool from 620C to 610C when the surrounding temperature is 300C. The time taken 

by the body to cool from 460C to 45.50C is      [MP PET 1999] 

(a) Greater than T minutes (b) Equal to T minutes (c) Less than T minutes (d) Equal to T/2 minutes 

Solution : (b) According to Newton's law of cooling  

For first condition 



 −

+
∝

−
30

2
61626162

T
    …..(i) 
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and for second condition 



 −

+
∝

−
30

2
5.45465.4546

t
  ….(ii) 

By solving (i) and (ii) we get t = T sec.  

Problem

)( 4
0

4 TT
mc

A
dt
dT

−=
σ

 50.  The rates of cooling of two different liquids put in exactly similar calorimeters and kept in identical 

surroundings are the same if        [MP PMT / PET 1998] 

(a) The masses of the liquids are equal 

(b) Equal masses of the liquids at the same temperature are taken 

(c) Different volumes of the liquids at the same temperature are taken 

(d) Equal volumes of the liquids at the same temperature are taken 

Solution : (d) . If the liquids put in exactly similar calorimeters and identical surrounding then we can 

consider T0 and A constant then  
mc

TT

dt
dT )( 4

0
4 −

∝   ……(i) 

If we consider that equal masses of liquid (m) are taken at the same temperature then 
cdt

dT 1
∝  

So for same rate of cooling c should be equal which is not possible because liquids are of different nature.  

Again from (i) equation 
mc

TT

dt
dT )( 4

0
4 −

∝   ⇒  
cV

TT

dt
dT

ρ
)( 4

0
4 −

∝  

Now if we consider that equal volume of liquid (V) are taken at the same temperature then 
cdt

dT
ρ
1

∝ . 

So for same rate of cooling multiplication of ρ× c for two liquid of different nature can be possible. So option 

(d) may be correct.  
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 51.  Hot water cools from 60oC to 50oC in the first 10 minutes and to 42oC in the next 10 minutes. The 

temperature of the surrounding       [MP PET 1993] 

(a) 5oC (b) 10oC (c) 15oC (d) 20oC 

Solution : (b)  

For first condition 



 −

+
∝

− θ
2

5060
10

5060
          ⇒  1 = K [55 – θ] ……(i) 

For second condition 



 −

+
∝

− θ
2

4250
10

4250
    ⇒ 0.8 = K (46 – θ )  …..(ii) 

From (i) and (ii) we get θ = 10oC  

 

Temperature of The Sun and Solar Constant. 

If R is the radius of the sun and T its temperature, then the energy emitted by the sun per sec through 

radiation in accordance with Stefan’s law will be given by 
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  424 4 TRTeAP σπσ ==  

In reaching earth this energy will spread over a sphere of radius r (= average distance 
between sun and earth); so the intensity of solar radiation at the surface of earth (called solar 

constant S) will be given by 

  
2

42

2 4

4

4 r

TR

r

P
S

π
σπ

π
==  

i.e.  

4/12


















=

σ
S

R
r

T   K5800~
1067.5

104.1

107

105.1
4/1

8
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As 8105.1 ×=r km, 5107×=R km, 
22

4.12
m

kW

mincm

cal
S ==  and 

42
81067.5

Km

W−×=σ  

This result is in good agreement with the experimental value of temperature of sun, i.e., 6000 K.  

The difference in the two values is attributed to the fact that sun is not a perfectly black body. 

R 

r 

Sun 
Earth 
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