
 Electric Dipole. 

(1) General information : System of two equal and opposite charges separated by a small fixed 

distance is called a dipole. 

 

 

 

 

 

(i) Dipole axis : Line joining negative charge to positive charge of a dipole is called its axis. It may also 

be termed as its longitudinal axis. 

(ii) Equatorial axis : Perpendicular bisector of the dipole is called its equatorial or transverse axis as it is 

perpendicular to length. 

(iii) Dipole length : The distance between two charges is known as dipole length (L = 2l)  

(iv) Dipole moment : It is a quantity which gives information about the strength of dipole. It is a vector 

quantity and is directed from negative charge to positive charge along the axis. It is denoted as p


 and is 

defined as the product of the magnitude of either of the charge and the dipole length.  

i.e.     )2( lqp


=  

Its S.I. unit is coulomb-metre or Debye (1 Debye = 3.3 × 10–30 C × m) and its dimensions are 

M0L1T1A1. 

Note : ≅ A region surrounding a stationary electric dipole has electric field only.  

 ≅ When a dielectric is placed in an electric field, its atoms or molecules are considered as tiny 

dipoles.  

 

    

 

 

≅ Water (H2O), Chloroform (CHCl3), Ammonia (NH3), HCl, CO molecules are some example of 

permanent electric dipole. 

 

 

   

  

(2) Electric field and potential due to an electric dipole : It is better to understand electric dipole 

with magnetic dipole. 
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S.No. Electric dipole Magnetic dipole 

(i) System of two equal and opposite charges separated 

by a small fixed distance. 

 

 

 

 

System of two equal and opposite magnetic poles 

(Bar magnet) separated by a small fixed distance. 

 

 

 

(ii) Electric dipole moment : )2( lqp


= , directed from  

q−  to +q. It’s S.I. unit is coulomb × meter or 

Debye.  

Magnetic dipole moment : )2( lmM


= , directed 

from  S to N. It’s S.I. unit is ampere × meter2. 

(iii) Intensity of electric field   

 

 

 

 

 

 

 

If a, e and g are three points on axial, equatorial and  

general position at a distance r from the centre of 

dipole  

on axial point 
3

0

2
.

4

1

r

p
Ea πε

=  (directed from – q to +q) 

on equatorial point 
3

0

.
4

1

r

p
Ee πε

= (directed from +q to –q) 

on general point )1cos3(.
4

1 2

3
0

+= θ
πε r

p
Ea  

Angle between – aE


 and p


 is 0o, eE


 and p


 is 180o, 

E


 and p


 is (θ + α) (where θα tan
2

1
tan = ) 

Electric Potential – At a 
2

0

.
4

1

r

p
Va πε

= , At e 0=V   

At g 
2

0

cos
.

4

1

r

p
V

θ
πε

=   

Intensity of magnetic field 

 

 

 

 

 

 

 

If a, e and g are three points on axial, equatorial and  

general position at a distance r from the centre of 

dipole  

on axial point 
3

0 2
.

4 r

M
Ba π

µ
=  (directed from  S to N) 

on equatorial point 
3

0 .
4 r

M
Be π

µ
=  (directed from N to S) 

on general point )1cos3(.
4

2

3

0 += θ
π
µ

r

M
Ba  

Angle between – aB


 and M


 is 0o, eB


 and M


 is 

180o, B


 and M


 is (θ + α) (where θα tan
2

1
tan = ) 

 

  

 

(3) Dipole (electric/magnetic) in uniform field (electric/magnetic)  

(i) Torque : If a dipole is placed in an uniform field such that dipole (i.e. p


 or M


) makes an angle θ 

with direction of field then two equal and opposite force acting on dipole constitute a couple whose tendency is 

to rotate the dipole hence a torque is developed in it and dipole tries to align it self in the direction of field. 
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Consider an electric dipole in placed in an uniform 

electric field such that dipole (i.e. p ) makes an angle θ 

with the direction of electric field as shown 

 

 

 

 

 

 

 

(a) Net force on electric dipole 0=netF  

(b) Produced torque τ = pE sinθ    )( EP ×=τ  

A magnetic dipole of magnetic moment M is placed in 

uniform magnetic field B by making an angle θ as shown 

 

 

 

 

 

 

 

 

(a) Net force on magnetic dipole 0=netF  

(b) torque τ = MB sinθ    )( BM ×=τ  

 

(ii) Work : From the above discussion it is clear that in an uniform electric/magnetic field dipole tries to 

align itself in the direction of electric field (i.e. equilibrium position). To change it’s angular position some work 

has to be done.  

Suppose an electric/magnetic dipole is kept in an uniform electric/magnetic field by making an angle θ1 

with the field, if it is again turn so that it makes an angle θ2 with the field, work done in this process is given by 

the formula  

 

 

 

 

 

 

)cos(cos 21 θθ −= pEW  

If θ1 = 0o and θ2 = θ i.e. initially dipole is kept along 

the field then it turn through θ so work done 

)cos1( θ−= pEW  

 

 

 

 

 

 

)cos(cos 21 θθ −= MBW  

 If θ1 = 0o and θ2 = θ then W = MB(1 – cosθ)  

 

(iii) Potential energy : In case of a dipole (in a uniform field), potential energy of dipole is defined as work 

done in rotating a dipole from a direction perpendicular to the field to the given direction i.e. if θ1 = 90o and θ2 = θ  

then – 
 

 

 

 

 

 
 

)cos90(cos θ−== pEUW  ⇒ U = – pE cosθ 

 

 

 

 

 
 

)cos90(cos θ−== MBUW  ⇒ U = – MB cosθ 
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(iv) Equilibrium of dipole : We know that, for any equilibrium net torque and net force on a particle 

(or system) should be zero. 

We already discussed when a dipole is placed in an uniform electric/magnetic field net force on dipole is 

always zero. But net torque will be zero only when θ = 0o or 180o  

When θ = 0o i.e. dipole is placed along the electric field it is said to be in stable equilibrium, because after 

turning it through a small angle, dipole tries to align itself again in the direction of electric field. 

When θ = 180o i.e. dipole is placed opposite to electric field, it is said to be in unstable equilibrium. 

 

 

 

 

 

 θ = 0o   θ = 90O  θ = 180o  

Stable equilibrium  Unstable equilibrium  

τ = 0    τmax = pE  τ = 0 

W = 0   W = pE  Wmax = 2pE  

Umin = – pE   U = 0  Umax = pE  

 

 

 

 

θ = 0o    θ = 90O  θ = 180o  

Stable equilibrium    Unstable equilibrium  

τ = 0    τmax = MB    τ = 0 

W = 0      W = MB            Wmax = 2MB  

Umin = – MB        U = 0   Umax = MB 

 

(v) Angular SHM : In a uniform electric/magnetic field (intensity E/B) if a dipole (electric/magnetic) is 

slightly displaced from it’s stable equilibrium position it executes angular SHM having period of oscillation. If I 

= moment of inertia of dipole about the axis passing through it’s centre and perpendicular to it’s length. 

For electric dipole :  
pE

I
T π2=  and For Magnetic dipole :  

MB

I
T π2=  

(vi) Dipole-point charge interaction : If a point charge/isolated magnetic pole is placed in dipole 

field at a distance r from the mid point of dipole then force experienced by point charge/pole varies 

according to the relation 
3

1

r
F ∝  

(vii) Dipole-dipole interaction : When two dipoles placed closed to each other, they experiences a 

force due to each other. If suppose two dipoles (1) and (2) are placed as shown in figure then  

Both the dipoles are placed in the field of one another hence potential energy dipole (2) is  

3

1

0
212122

2
.

4

1
0cos

r

p
pEpEpU

πε
×−=−=−=  

then by using  
dr

dU
F −= , Force on dipole (2) is 

dr

dU
F 2

2 −=  

⇒  


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


−=
3
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.
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Similarly force experienced by dipole (1)  
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Negative sign indicates that force is attractive. 
4

21

0

6
.

4

1
||

r

pp
F

πε
=  and 

4

1

r
F ∝   

S. No. Relative position of dipole Force Potential energy 

(i)  

 

 

4
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0

6
.

4

1

r

pp

πε
 (attractive) 

3

21

0

2
.

4

1

r

pp

πε
 

(ii)  

 

 

 

 
 

4

21

0

3
.

4

1

r

pp

πε
 (repulsive) 

3
21

0

.
4

1

r

pp

πε
 

(iii)  

 

 

 

 
 

4

21

0

3
.

4

1

r

pp

πε
 (perpendicular to r ) 

0 

 

Note :  ≅  Same result can also be obtained for magnetic dipole. 

(4) Electric dipole in non-uniform electric field : When an electric dipole is placed in a non-

uniform field, the two charges of dipole experiences unequal forces, therefore the net force on the dipole is not 

equal to zero. The magnitude of the force is given by the negative derivative of the potential energy w.r.t. 

distance along the axis of the dipole i.e. 
dr

Ed
p

dr

dU
F .−=−= . 

Due to two unequal forces, a torque is produced which rotate the dipole so as to align it in the direction of 

field. When the dipole gets aligned with the field, the torque becomes zero 

and then the unbalanced force acts on the dipole and the dipole then moves 

linearly along the direction of field from weaker portion of the field to the 

stronger portion of the field. So in non-uniform electric field 

(i) Motion of the dipole is translatory and rotatory 

(ii) Torque on it may be zero. 

Concepts 

 For a short dipole, electric field intensity at a point on the axial line is double than at a point on the equatorial line on electric 

dipole i.e. Eaxial = 2Eequatorial 

 It is intresting to note that dipole field 
3

1

r
E ∝  decreases much rapidly as compared to the field of a point charge .

1
2 







∝

r
E  
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Example: 84 If the magnitude of intensity of electric field at a distance x on axial line and at a distance y on equatorial 
line on a given dipole are equal, then x : y is       [EAMCET 1994] 

(a) 1 : 1  (b) 2:1  (c) 1 : 2 (d) 1:23  

Solution: (d) According to the question  
3

0
3

0

.
4

12
.

4

1

y

p

x

p

πεπε
=   ⇒ 1:)2( 3/1=

y

x
 

Example: 85 Three charges of (+2q), (– q) and (– q) are placed at the corners A, B and C of an equilateral triangle of 

side a as shown in the adjoining figure. Then the dipole moment of this combination is [MP PMT 1994; CPMT 1994] 

 

(a) qa  

(b) Zero  

(c) 3aq  

(d) qa
3

2
 

Solution: (c) The charge +2q can be broken in +q, +q. Now as shown in figure we have two equal dipoles inclined 
at an angle of 60o. Therefore resultant dipole moment will be 

60cos222 pppppnet ++=  

        p3=      

        qa3=  

Example: 86 An electric dipole is placed along the x-axis at the origin O. A point P is at a distance of 20 cm from this 

origin such that OP makes an angle 
3

π
 with the x-axis. If the electric field at P makes an angle θ with x-

axis, the value of θ would be        [MP PMT 1997] 

    (a) 
3

π
 (b) 










+ −

2

3
tan

3
1π

 (c) 
3

2π
 (d) 









−

2

3
tan 1  

Solution: (b) According to question we can draw following figure. 

As we have discussed earlier in theory απθ +=
3

   

 
3

tan
2

1
tan

πα =  ⇒  
2

3
tan 1−=α  

So,  
2

3
tan

3
1−+=

πθ   

Example: 87 An electric dipole in a uniform electric field experiences       [RPET 2000] 

(a) Force and torque both (b) Force but no torque (c) Torque but no force (d) No force and no 
torque 

Solution: (c) In uniform electric field Fnet = 0, τnet ≠ 0 

Example: 89 Two opposite and equal charges 4 × 10–8 coulomb when placed 2 × 10–2 cm away, form a dipole. If this 
dipole is placed in an external electric field 4 × 108 newton/coulomb, the value of maximum torque and 
the work done in rotating it through 180o will be    [MP PET 1996 Similar to MP PMT 1987] 

(a) 64 × 10–4 Nm and 64 × 10–4 J  (b) 32 × 10–4 Nm and 32 × 10–4 J  

Examples based on electric dipole – q +q 

60O 

P P 
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– q – q a 
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(c) 64 × 10–4 Nm and 32 × 10–4 J (d) 32 × 10–4 Nm and 64 × 10–4 J 

Solution: (d) τmax = pE  and  Wmax = 2pE       p = Q × 2l = 4 × 10–8 × 2 × 10–2 × 10–2 = 8 × 10–12 C-m  

So, τmax = 8 × 10–12 × 4 × 108 = 32 × 10–4 N-m and Wmax = 2 × 32 × 10–4 = 64 × 10–4 J  

Example: 90 A point charge placed at any point on the axis of an electric dipole at some large distance experiences a 
force F. The force acting on the point charge when it’s distance from the dipole is doubled is 

[CPMT 1991; MNR 1986] 

(a) F  (b) 
2

F
 (c) 

4

F
 (d) 

8

F
 

Solution: (d) Force acting on a point charge in dipole field varies as 
3

1

r
F ∝  where r is the distance of point charge 

from the centre of dipole. Hence if r makes double  so new force 
8

'
F

F = . 

Example: 91 A point particle of mass M is attached to one end of a massless rigid non-conducting rod of length L. 
Another point particle of the same mass is attached to other end of the rod. The two particles carry 
charges +q and – q respectively. This arrangement is held in a region of a uniform electric field E such 
that the rod makes a small angle θ (say of about 5 degrees) with the field direction (see figure). Will be 
minimum time, needed for the rod to become parallel to the field after it is set free     

 

 

 
 

(a) 
pE

mL
t

2
2π=  (b) 

qE

mL
t

22

π
=  (c) 

pE

mL
t

22

3π
=  (d) 

qE

mL
t

2π=  

Solution: (b) In the given situation system oscillate in electric field with maximum angular displacement θ.  

It’s time period of oscillation (similar to dipole) 

  
pE

I
T π2=  where I = moment of inertia of the system and qLp =  

Hence the minimum time needed for the rod becomes parallel to the field is 
pE

IT
t

24

π
==  

Here 
222

222
MLL

M
L

MI =





+






=   ⇒   

qE

ML

EqL

ML
t

2222

2 ππ
=

××
=  

 

 
  

An electric dipole is placed at the origin O and is directed along the x-axis. At a point P, far away from 
the dipole, the electric field is parallel to y-axis. OP makes an angle θ with the x-axis then 

(a) 3tan =θ  (b) 2tan =θ  (c) θ = 45o  (d) 
2

1
tan =θ  

Solution: (b) As we know that in this case electric field makes an angle θ +α with the direction of dipole 

Where  θα tan
2

1
tan =  

Here   θ +α = 90o  ⇒  θα −= 90  

Hence θθ tan
2

1
)90tan( =−   ⇒   θθ tan

2

1
cot =  

 Tricky example: 12  

O 
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E
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⇒  2tan2 =θ     ⇒  2tan =θ  

 Electric Flux. 

(1) Area vector : In many cases, it is convenient to treat area of a surface as a vector. The length of the 

vector represents the magnitude of the area and its direction is along the outward drawn normal to the area. 

 

 

 

 

(2) Electric flux : The electric flux linked with any surface in an electric field is basically a measure of 
total number of lines of forces passing normally through the surface.  or 

Electric flux through an elementary area ds  is defined as the scalar product of area of field i.e. 

θφ cosdsEdsEd =⋅=  

Hence flux from complete area (S) ∫= θφ cosdsE  = ES cosθ  

If θ = 0o, i.e. surface area is perpendicular to the electric field, so flux linked 
with it will be max. 

i.e. φmax = E ds  and  if θ = 90o,  φmin = 0  

(3) Unit and Dimensional Formula 

S.I. unit – (volt × m) or 
2m

CN −
  

It’s Dimensional formula – (ML3T–3A– 1) 

(4) Types : For a closed body outward flux is taken to be positive, while inward flux is to be negative  

 

 

   

 

 
 

 Gauss’s Law. 

(1) Definition : According to this law, total electric flux through a closed surface enclosing a charge is 

0

1

ε
 times the magnitude of the charge enclosed i.e. )(

1
.

0
encQ

ε
φ =   

(2) Gaussian Surface : Gauss’s law is valid for symmetrical charge distribution. Gauss’s law is very 

helpful in calculating electric field in those cases where electric field is symmetrical around the source producing 

it. Electric field can be calculated very easily by the clever choice of a closed surface that encloses the source 

charges. Such a surface is called “Gaussian surface”. This surface should pass through the point where electric 

field is to be calculated and must have a shape according to the symmetry of source. 

Area ds 

sd


 

d

θ 

sd


E


(B) 

Body 

Negative-flux 

(A) 
Positive – flux 

Body 

n E 
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e.g. If suppose a charge Q is placed at the centre of a hemisphere, then to calculate the flux through this 

body, to encloses the first charge we will have to imagine a Gaussian surface. This imaginary Gaussian surface 

will be a hemisphere as shown.  

Net flux through this closed body 
0ε

φ Q
=  

Hence flux coming out from given hemisphere is .
2 0ε

φ Q
=  

(3) Zero flux : The value of flux is zero in the following circumstances  

(i) If a dipole is enclosed by a surface  

 

 

0;0 == encQφ  

 

 

(ii) If the magnitude of positive and negative charges 

are equal inside a closed surface 

 

 

 ,0=encQ   

so,  φ = 0 

(iii) If a closed body (not enclosing any charge) is placed in an electric field (either uniform or non-uniform) 

total flux linked with it will be zero 

 

 

 

 

 

 

 

 

 

     0=Tφ       2aEutoin == φφ  

 

(4) Flux emergence : Flux linked with a closed body is independent of the shape and size of the body 

and position of charge inside it 

 

 

 

  

 

 

Sphere 

0=Tφ  

• Q 

+q –q 
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sd


 

sd

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
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φ
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•Q 

0
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φ
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φ
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φ
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ERin
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(i) If a hemispherical body is placed in uniform 

electric field then flux linked with the curved surface 

  

 

 

ERcurved
2πφ +=  

(ii) If a hemispherical body is placed in non-uniform 

electric field as shown below. then flux linked with 

the curved surface. 

 

 

ERcurved
22πφ =  

(v) If charge is kept at the centre of cube 

 

    ).(
1

0

Qtotal ε
φ =  

    
06ε

φ Q
face =   

   

 
08ε

φ Q
corner =    

012ε
φ Q

edge =  

 

(iv)  If charge is kept at the centre of a face  

 

 

    

 

First we should enclosed the charge by assuming 
a Gaussian surface (an identical imaginary cube) 

 
0ε

φ Q
total =  

    
02ε

φ Q
cube =  (i.e. from 5 face only) 

    
00 1025

1

εε
φ QQ

face =







= . 

 

Concept 

 In C.G.S. 
π

ε
4

1
0 = .  Hence if 1C charge is enclosed by a closed surface so flux through the surface will be πφ 4= . 

 

 

Example: 91 Electric charge is uniformly distributed along a long straight wire of radius 1 mm. The charge per cm length 

of the wire is Q coulomb. Another cylindrical surface of radius 50 cm and length 1 m symmetrically 

encloses the wire as shown in the figure. The total electric flux passing through the cylindrical surface is  

 [MP PET 2001] 

(a) 
0ε

Q
 

(b) 
0

100

ε
Q

 

(c) 
)(

10

0πε
Q

 

E


 

n̂  

R 

n̂  

R 

Example based on electric flux and Gauss’s 
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(d) 
)(

100

0πε
Q

 

Solution: (b)  Given that charge per cm length of the wire is Q. Since 100 cm length of the wire is enclosed so 

QQenc 100=  

⇒ Electric flux emerging through cylindrical surface 
0

100

ε
φ

Q
= . 

Example: 92  A charge Q is situated at the corner A of a cube, the electric flux through the one face of the cube is  

[CPMT 2000] 

 

 

 

 
 

(a) 
06ε

Q
 (b) 

08ε
Q

 (c) 
024ε

Q
 (d) 

02ε
Q

 

Solution: (c) For the charge at the corner, we require eight cube to symmetrically enclose it in a Gaussian surface. The 

total flux 
0ε

φ Q
T = . Therefore the flux through one cube will be .

8 0ε
φ Q

cube =  The cube has six faces and 

flux linked with three faces (through A) is zero, so flux linked with remaining three faces will .
8 0ε
φ

 Now 

as the remaining three are identical so flux linked with each of the three faces will be 

00 24

1

8

1

3

1

εε
QQ

=



















×= . 

Example: 93  A square of side 20 cm is enclosed by a surface of sphere of 80 cm radius. Square and sphere have the 
same centre. Four charges + 2 × 10–6 C, – 5 × 10– 6 C, – 3 × 10– 6 C, +6 × 10– 6 C are located at the 
four corners of a square, then out going total flux from spherical surface in N–m2/C will be  

(a) Zero (b) (16 π) × 10– 6  (c) (8π) × 10–6  (d) 36π × 10–6  

Solution: (a) Since charge enclosed by Gaussian surface is 

 0)106103105102( 6666
. =×+×−×−×= −−−−

encφ    so  0=φ  

Example: 94 In a region of space, the electric field is in the x-direction and proportional to x, i.e., ixEE ˆ
0= . Consider 

an imaginary cubical volume of edge a, with its edges parallel to the axes of coordinates. The charge 
inside this cube is  

(a) Zero  (b) 3
00 aEε  (c) 3

0
0

1
aE

ε
 (d) 2

00
6

1
aEε  

Solution: (b) The field at the face ABCD = .̂00 ixE  

∴ Flux over the face ABCD = – (E0x0)a
2  

The negative sign arises as the field is directed into the cube. 

The field at the face EFGH = .̂)( 00 iaxE +  

∴ Flux over the face EFGH = 2
00 )( aaxE +  

The flux over the other four faces is zero as the field is parallel to the 
surfaces. 
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∴  Total flux over the cube qaE
2

12
0 ==  

where q is the total charge inside the cube.     ∴ .3
00 aEq ε=   

 
  

In the electric field due to a point charge + Q a spherical closed surface is drawn as shown by the 

dotted circle. The electric flux through the surface drawn is zero by Gauss’s law. A conducting sphere is 

inserted intersecting the previously drawn Gaussian surface. The electric flux through the surface  

(a) Still remains zero  

(b) Non zero but positive 

(c) Non-zero but negative  

(d) Becomes infinite 

Solution: (b) Due to induction some positive charge will lie within the Gaussian surface drawn and hence flux 

becomes something positive. 

 Application of Gauss’s Law. 

Gauss’s law is a powerful tool for calculating electric field in case of symmetrical charge distribution by 

choosing a Gaussian surface in such away that E  is either parallel or perpendicular to it’s various faces.  

e.g. Electric field due to infinitely long line of charge : Let us consider a 

uniformly charged wire of infinite length having a constant linear charge density is 

.
length

charge








=λλ Let P be a point distant r from the wire at which the electric field is to be 

calculated. 

Draw a cylinder (Gaussian surface) of radius r and length l around the line charge 

which encloses the charge Q ( lQ .λ= ). Cylindrical Gaussian surface has three surfaces; 

two circular and one curved for surfaces (1) and (2) angle between electric field and normal to the surface is 

90o i.e., .90o=θ   

So flux linked with these surfaces will be zero. Hence total flux will pass through curved surface and it is  

  ∫= θφ cosdsE    …. (i) 

According to Gauss’s law  

  
0ε

φ Q
=      …. (ii) 

Equating equation (i) and (ii)  ∫ =
0ε

Q
dsE    

 ⇒  ∫ =⇒=
00

2
ε

π
ε

Q
rlEx

Q
dsE   

 ⇒  
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n̂  
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 Tricky example: 13 

+Q 

Electric Charges and Fields (Electrostatics Part 4)

12

TEACHING CARE 


	Intensity of magnetic field
	E

